The spatial-temporal variation of weathering and migration of salt-forming elements in potassium-rich granites of the Golmud River catchment
CSTR:
Author:
Clc Number:

P611;P619.21+1

  • Article
  • | |
  • Metrics
  • |
  • Reference [52]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Located in the middle part of the east Kunlun Mountains, the Golmud River catchment is covered with a large area of granite, especially the potassium-rich granite in local areas. In order to understand the evolution of distal Qarhan Salt Lake, it is important to study the distribution of these granites, the variation of the K, B, and Li elements, and their temporal and spatial migration. In this study, the authors collected samples from granites and their weathered detrital materials along Kunlun River section, Xidatan River section, and Xiaogangou section of Golumd River catchment. Based on major and trace element analysis, rock slice identification, chemical weathering index, and optical stimulated luminescence dating (OSL), the authors investigated the salt-forming elements in the granites and their weathered products. The results are as follows:① In the Xidatan and Kunlun River catchment, gray-white, medium-fine grained late Variscan granulites are predominant, with intermediate level potassium content; In the Xiaogangou River section, there are mainly gray-white and flesh red late Yanshanian porphyritic adamellites, which are potassium-rich granites, and thus these areas are advantageous metallogenic targets of potassium; ② K content gradually decreases and B, Li element content gradually increases with the increasing weathering degree in the granite. The Xiaogangou River section has high K, B content, but the Kunlun River section shows high Li content; ③ The chemical weathering indexes, such as WPI, LOI, are well coupled with the element content variations of different weathering degree samples, indicating that these two chemical weathering indexes are sensitive to the variation of weathering degree; ④ The alluvial sediments section of Xiaogangou River catchment has OSL ages from 95.9±10.5 ka in the bottom layer to 17.7±1.0 ka in the upper layer, and the WPI index, K, B and Li content variation curves in the sections indicate that the salt-forming elements migrations in the granites in the Golmud River catchment seem to have been related to the chemical weathered degree change associated with the glacial-interglacial cycles since late Pleistocene, and these elements have provided abundant saline minerals for the Qarhan Salt Lake.

    Reference
    An F Y, Lai Z P, Liu X J, et al. 2018b. Luminescence chronology and radiocarbon reservoir age determination of lacustrine sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau, and its palaeoclimate implications[J]. Journal of Earth Science, 29(3):695~706. https://doi.org/10.1007/s12583-017-0972-9.
    An F Y, Liu X J, Wang Y X, et al. 2018a. Drainage geomorphic evolution since 12.8 ka in response to the paleoclimatic changes in eastern Kunlun Mountain, NE Qinghai-Tibetan Plateau[J]. Geomorphology, 319:117~132. https://doi.org/10.1016/j.geomorph.2018.07.016.
    An Fuyuan, Ma Haizhou, Wei Haicheng, et al. 2013. Grain-size distribution patterns of lacustrine sediments of Qarhan area and its environmental significance[J]. Arid Land Geography, 36(2):212~220(in Chinese with English abstract).
    An Z, Colman S M, Zhou W, et al. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2:619~625. https://doi.org/10.1038/srep00619.
    Boltan C T, Chang L, Clemens S C, et al. 2013. A 500000 year record of Indian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column structure[J]. Quaternary Science Reviews, 77:167~180. https://doi.org/10.1016/j.quascirev.2013.07.131.
    Bureau of Geology and Mineral Resources of Qinghai Province. 1991. Attached Map 1 of Regional Geology of Qinghai Province[M]. Beijing:Geological Publishing House(in Chinese).
    Chen Jun, Wang Yongjin, Chen Yang, et al. 2001. Rb and Sr geochemical characterization of the Chinese Loess and its implications for palaeomonsoon climate[J]. Acta Geologica Sinica, 75(2):259~266(in Chinese with English abstract).
    Huang Qi and Han Fengqing. 2007. Evolution of Salt Lakes and Palaeoclimate fluctuation in Qaidam Basin[M]. Beijing:Science Press(in Chinese).
    Jia Xiaolong, An Fuyuan, Zhang Qixing, et al. 2016. Research progress of geomorphic evolution of Golmud River, southeastern Qaidam Basin[J]. Journal of Salt Lake Research, 24(4):59~65(in Chinese with English abstract).
    Lai Z P and Brtickner H. 2008. Effects of feldspar contamination on equivalent dose and the shape of growth curve for OSL of silt-sized quartz extracted from Chinese loess[J]. Geochronometria, 30:49~53. https://doi.org/10.2478/v10003-008-0010-0.
    Lai Z P and Wintle A G. 2006. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence[J]. The Holocene, 16:893~899. https://doi.org/10.1191/0959683606hol980rr.
    Lai Z P, Wintle A G, Thomas D S G. 2007. Rates of dust deposition between 50 ka and 20 ka revealed by OSL dating at Yuanbao on the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 248:431~439. https://doi.org/10.1016/j.palaeo.2006.12.013.
    Li Wenpeng and He Qingcheng. 1993. Discussion on the origins of the materials in Qarhan Salt Lake[J]. Journal of Hebei College of Geology, 16(3):254~263(in Chinese with English abstract).
    Liu Chengyu and He Manchao. 2011. Research on the sensitive chemical weathering indices to rock weathering[J]. Earth and Environment, 39(3):349~354(in Chinese with English abstract).
    Ng Wang W C, Shang Yanjun, Qu Yongxin, et al. 1999. Chemical weathering indices, classification, and zoning of weathered granitic rock in Hong Kong[J]. Journal of Engineering Geology, 7(2):125~134(in Chinese).
    Owen L A, Finkel R C, Ma H, et al. 2006. Late Quaternary landspcape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet:A framework for examining the links between glaciation, lake level changes and alluvial fan formation[J]. Quaternary International, 154~155:73~86. https://doi.org/10.1016/j.quaint.2006.02.008.
    Qi Shengsheng. 2015. Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province[D]. Beijing:China University of Geosciences(in Chinese with English abstract).
    Roberts H M. 2007. Assessing the effectivence of the double-SAR proyocol in isolating a luminescence signal dominated by quartz[J]. Radiation Measurements, 42:1627~1636. https://doi.org/10.1016/j.radmeas.2007.09.010.
    Shang Yanjun, Ng Wang W C, Qu Yongxin, et al. 2001. Comparison of chemical indices and micro-properties of weathering degrees of granitic rocks-A case study from Kowloon, Hong Kong[J]. Chinese Journal of Geology, 36(3):279~294(in Chinese with English abstract).
    Tamer T. 2002. Quantification of weathering depths in slightly weathered tuffs[J]. Environmental Geology, 42:632~641. https://doi.org/10.1007/s00254-002-0566-3.
    Tan Hongbing. 2000. The Study on the Water Environment Geochemistry in Golmud River watershed[D]. Beijing:University of Chinese Academy of Sciences(in Chinese with English abstract).
    Tang Qiliang, Zhang Xiying, Miao Weiliang, et al. 2016. Distribution charateristics of K, Li and B and their enrichments rule in the water of Golmud River drainage area[J]. Journal of Salt Lake Research, 24(2):26~31(in Chinese with English abstract).
    Thompson L G, Yao T, Davis M E, et al. 1997. Tropical climate instability:The last glacial cyclefromthe Qinghai-Tibetan Plateau ice core[J]. Science, 276:1821~1825. https://doi.org/10.1126/science.276.5320.1821.
    Wang Shengbin, Qi Zexue, Su Shijie, et al. 2020. Study on mechanisms of geological hazards caused by groundwater level rising in Golmud area based on numerical simulation[J]. Arid Zone Research, 37(5):1132~1139(in Chinese with English abstract).
    Xue Lingwen. 2016. Late Cenozoic Tectonic Landform Analysis and Dynamic Mechanism of Xidatan Basin, Eastern Kunlun[D]. Chengdu:Chengdu University of Technology(in Chinese with English abstract).
    Yu Lupeng, Lai Zhongping and An Ping. 2013. OSL Chronology of paleodunes in the middle and southwestern Qaidam Basin, China[J]. Journal of Desert Research, 33(2):453~462(in Chinese with English abstract).
    Yu Shengsong, Tan Hongbing, Liu Xingqi, et al. 2010. Study on Sustainable Utilization of Salt Lake Resources in Qarhan[M]. Beijing:Science Press (in Chinese).
    Zhang Luyue. 2014. Engineering Properties and Forming Mechanism of Emeishan Basalt Saporte[D]. Kunming:Kunming University of Science and Technology(in Chinese with English abstract).
    Zhang Xiang. 2017. Petrogenesis and Tectonic Setting of Granite Porphyry in the Upper Reaches of Lainggaoli River, Golmud, Qinghai Province[D]. Beijing:China University of Geosciences(in Chinese with English abstract).
    Zhao Xitao, Hu Daogong, Wu Zhonghai, et al. 2010. Discovery of the Early Pleistocene Kunlunhe conglomerate in Gomud of Qinghai Province and its geological significance[J]. Journal of Geomechanics, 1(16):1~10(in Chinese with English abstract).
    Zhu Yunzhu, Li Zhengyan, Wu Bihao, et al. 1990. The formation of the Qarhan Saline Lakes as viewed from the Neotectonic movement[J]. Acta Geologica Sinica, 1:32~36(in Chinese with English abstract).
    附中文参考文献
    安福元, 马海州, 魏海成, 等. 2013. 柴达木盆地察尔汗盐湖湖相沉积物的粒度分布模式及其环境意义[J]. 干旱区地理, 36(2):212~220.
    陈骏, 汪永进, 陈旸, 等. 2001. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报, 75(2):259~266.
    黄麒, 韩凤清. 2007. 柴达木盆地盐湖演化与古气候波动[M]. 北京:科学出版社, 1~209.
    贾小龙, 安福元, 张啟兴, 等. 2016. 格尔木河流域河流地貌演化研究进展[J]. 盐湖研究, 24(4):59~65.
    李文鹏, 何庆成. 1993. 察尔汗盐湖物质来源的讨论[J]. 河北地质学院学报, 16(3):254~263.
    刘成禹, 何满潮. 2011. 对岩石风化程度敏感的化学风化指数研究[J]. 地球与环境, 39(3):349~354.
    祁生胜. 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化[D]. 北京:中国地质大学.
    青海省地质矿产局. 1991. 青海省区域地质志附青海省地质图[M]. 北京:地质出版社.
    尚彦军, 吴宏伟, 曲永新. 2001. 花岗岩风化程度的化学指标及围观特征对比——以香港九龙地区为例[J]. 地球科学, 36(3):279~294.
    谭红兵. 2000. 格尔木河流域水环境地球化学研究[D]. 北京:中国科学院大学.
    唐启亮, 张西营, 苗卫良, 等. 2016. 格尔木河流域河水钾硼锂元素分布特征及富集规律[J]. 盐湖研究, 24(2):26~31.
    汪生斌, 祁泽学, 苏世杰, 等. 2020. 基于数值模拟的格尔木地区地下水位致灾性抬升机理研究[J]. 干旱区研究, 37(5):1132~1139.
    吴宏伟, 尚彦军, 曲永新, 等. 1999. 香港花岗岩风化等级化学指标体系与风化壳分带[J]. 工程地质学报, 7(2):125~134.
    薛灵文. 2016. 东昆仑西大滩盆地晚新生代构造地貌特征及动力学机制研究[D]. 成都:成都理工大学.
    于禄鹏, 赖忠平, 安萍, 等. 2013. 柴达木盆地中部与西南部古沙丘的光释光年代学研究[J]. 中国沙漠, 33(2):453~462.
    于升松, 谭红兵, 刘兴起, 等. 2010. 察尔汗盐湖资源可持续利用研究[M]. 北京:科学出版社.
    张露月. 2014. 峨眉山玄武岩腐岩的物理力学特性及其形成机制[D]. 昆明:昆明理工大学.
    张翔. 2017. 青海格尔木拉陵高里河上游花岗斑岩岩石成因及构造背景[D]. 北京:中国地质大学.
    赵希涛, 胡道功, 吴中海, 等. 2010. 青海格尔木早更新世昆仑河砾岩的发现及其地质意义[J]. 地质力学学报, (16):1~10.
    朱允铸, 李争艳, 吴必豪, 等. 1990. 从新构造运动看察尔汗盐湖的形成[J]. 地质学报, 1:32~36.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

安福元,张西营,程夏丽,马振营,耿鋆,李姜瑶,2021,格尔木河流域富钾花岗岩中成盐元素风化迁移的时空演变[J].岩石矿物学杂志,40(1):14~26. AN Fu-yuan, ZHANG Xi-ying, CHENG Xia-li, MA Zhen-ying, GENG Jun, LI Jiang-yao,2021,The spatial-temporal variation of weathering and migration of salt-forming elements in potassium-rich granites of the Golmud River catchment[J]. Acta Petrologica et Mineralogica,40(1):14~26.

Copy
Share
Article Metrics
  • Abstract:799
  • PDF: 1434
  • HTML: 0
  • Cited by: 0
History
  • Received:October 26,2020
  • Online: January 16,2021
Article QR Code