Petrological studies of Jilang eclogite in the Lhasa terrane and its constraint on the subduction and exhumation processes of the Paleo-Tethys oceanic crust
CSTR:
Author:
Clc Number:

P588.34;P581

  • Article
  • | |
  • Metrics
  • |
  • Reference [72]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The (ultra-)high pressure eclogites from Sumdo area in eastern Lhasa terrane recorded the subduction and exhumation process of the Paleo-Tethys oceanic crust. Previous studies reported four main outcrops in Sumdo area, i.e., Sumdo, Xindaduo, Bailang and Jilang. Studying the peak metamorphic conditions and p-T path of Sumdo eclogite is of great significance for revealing the subduction and exhumation mechanism of Paleo-Tethys Ocean. In this paper, the authors chose Jilang eclogite for a case study, which has a mineral assemblage of garnet, omphacite, phengite, hornblende, rutile, epidote, quartz and symplectite (diopside+amphibole+plagioclase), and minor biotite. Garnet has a "dirty" core with abundant mineral inclusions and a "clear" rim with less mineral inclusions, showing typical growth zoning. From the core to the rim, Prp content in garnet increases while Grs content decreases, and the rim of garnets is wrapped by pargasite+plagioclase (An=28) corona, showing an amphibolite facies superimposition during retrogression. p-T pseudosection calculated with Domino contoured with isopleths of grossular and pyrope values in garnet and Si content in phengite constrained peak p-T conditions of Jilang eclogite as 563℃, 2.4 GPa. Combined with petrographical observation, the authors recognized four stages of metamorphism:① prograde metamorphism represented by the core of garnet and mineral inclusions therein; ② peak metamorphism represented by the rim of garnet, omphacite, phengite, glaucophane, lawsonite, rutile and quartz; ③ early stage retrograde metamorphism characterized by decomposition of lawsonite to epidote; ④ late stage retrograde metamorphism characterized by symplectites surrounding omphacite and cornona rimmed garnet. Jilang eclogite shows a clockwise p-T path, near isothermal decompression during exhumation, and is recorded as a high pressure, low temperature elcogite. Different from eclogites in other areas which are hosted by garnet-bearing mica schists or serpentinites, Jilang eclogites are enclosed in metamorphic quartzites, with relatively low p-T conditions. On the basis of mixture of rocks with various p-T conditions in this area, the authors infer that Jilang eclogite was derived from the shallow part of the subduction zone, and was exhumed by low density materials in the subduction channel.

    Reference
    Agard P, Yamato P, Jolivet L, et al. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones:Timing and mechanisms[J]. Earth-Science Reviews, 92:53~79.
    Carswell D A. 1990. Eclogite Facies Rocks[M]. New York:Blackie, 396.
    Carswell D A and Compagnoni R. 2003. Introduction with review of the definition, distribution and geotectonic significance of ultrahigh pressure metamorphism[A]. Carswell D A and Compagnoni R. EMU Notes in Mineralogy[C]. Eötvös University Press, 5:3~9.
    Chen Songyong, Yang Jingsui, Li Yuan, et al. 2009. Ultramafic blocks in Sumdo region, Lhasa block, Eastern Tibet plateau:An ophiolite unit[J]. Journal of Earth Science, 20(2):332~347.
    Chen Yi, Ye Kai, Wu Yuwen, et al. 2013. Exhumation of oceanic eclogites:Thermodynamic constraints on pressure, temperature, bulk composition and density[J]. Journal of Metamorphic Geology, 31:549~570.
    Cheng Hao, Liu Yumeng, Vervoort J D, et al. 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-Tethys Ocean in the Lhasa terrane, Tibet[J]. Gondwana Research, 28:1482~1499.
    Cheng Hao, Zhang Chao and Vervoort J D. 2012. Zircon U-Pb and garnet Lu-Hf geochronology of eclogites from the Lhasa Block, Tibet[J]. Lithos, 155(1):341~359.
    Clarke G L, Powell R and Fithzherbert J A. 2006. The lawsonite paradox:A comparison of field evidence and mineral equilibria modelling[J]. Journal of Metamorphic Geology, 24(8):715~725.
    Coggon R and Holland T J B. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers[J]. Journal of Metamorphic Geology, 20:683~696.
    Coleman R G and Wang X. 1995. Ultrahigh-pressure Metamorphism[M]. New York:Cambridge University Press, 528.
    Davies J H and von Blanchenburg F. 1995. Slab breakoff, a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 129:85~102.
    de Capitani C and Brown T H. 1987. The computation of chemical equilibrium in complex systems containing non-ideal solutions[J]. Geochimica et Cosmochimica Acta, 51:2639~2652.
    de Capitani C and Petrakakis K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American Mineralogist, 95:1006~1016.
    Diener J F A, Powell R, White R W, et al. 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O[J]. Journal of Metamorphic Geology, 25:631~656.
    Ernst W G. 1988. Tectonic History of Subduction Zones Inferred from Retrograde Blueschist p-T Paths[J]. Geology, 16(12):1081~1084.
    Ernst W G. 2001. Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices:Implications for arcs and continental growth[J]. Physics of the Earth and Planetary Interiors, 127(1~4):253~275.
    Ernst W G and Liou J G. 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts[J]. Geology, 23(4):353~356.
    Garcia-Casco A, Torres-Roldan R L, Millan G, et al. 2002. Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba:A record of tectonic instability during subduction?[J] Journal of Metamorphic Geology, 20:581~598.
    Green E, Holland T and Powell R. 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks[J]. American Mineralogist, 92:1181~1189.
    Guillot S, Hattori K, Agard P, et al. 2009. Exhumation processes in oceanic and continental subduction contexts:A review[A]. Lallemand S and Funiciello F. Subduction Zone Geodynamics[C]. Berlin-Heidelberg:Springer, 175~205.
    Hacker B R and Gerya T V. 2013. Paradigms, new and old, for ultrahighpressure tectonism[J]. Tectonophysics, 603:79~88.
    Hermann J, Müntener O and Scambelluri M. 2000. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust[J]. Tectonophysics, 327:225~238.
    Holland T, Baker J and Powell R. 1998. Mixing properties and activity-composition and relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O[J]. European Journal of Mineralogy, 10:395~406.
    Holland T J B and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 16:309~343.
    Holland T and Powell R. 2003. Activity-composition relations for phases in petrological calculations:An asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 145:492~501.
    Hu Daogong, Wu Zhenhan, Jiang Wan, et al. 2005. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyinqentanglha Group in Tibet[J]. Science in China (Series D), 48(9):1377~1386(in Chinese with English abstract).
    Huang Jie, Tian Zuolin, Zhang Cong, et al. 2015. Metamorphic evolution of Sumdo eclogite in Lhasa Block of the Tibetan Plateau:Phase equilibrium in NCKMnFMASHTO system[J]. Geology in China, 42:1559~1571(in Chinese with English abstract).
    Krebs M, Schertl H P, Maresch W V, et al. 2011. Mass flow in serpentinite-hosted subduction channels:p-T path patterns of metamorphic blocks in the Rio San Juan melange(Dominican Republic)[J]. Journal of Asian Earth Sciences, 42:569~595.
    Li Jilei, Gao Jun and Wang Xinshui. 2017. A subduction channel model for exhumation of oceanic-type high-pressure to ultrahigh-pressure eclogite-facies metamorphic rocks in SW Tianshan, China[J]. Science China Earth Sciences, 59:2339~2354(in Chinese with English abstract).
    Li Jilei, Klemd R, Gao Jun, et al. 2016. Poly-cyclic metamorphic evolution of eclogite:Evidence for multistage burial-exhumation cycling in a subduction channel[J]. Journal of Petrology, 57:119~146.
    Li Peng, Zhang Cong, Liu Xiaoyu, et al. 2017. The metamorphic processes of the Xindaduo eclogite in Tibet and its constrain on the evolutionary of the Paleo-Tethys subduction zone[J]. Acta Petrologica Sinica, 33(12):3753~3765(in Chinese with English abstract).
    Liou J G, Zhang Ruyuan and Ernst W G. 2007. Very high-pressure orogenic garnet peridotites[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(22):9116~9121.
    Maruyama S, Liou J G and Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation[J]. International Geology Review, 38:485~594.
    Mo Xuanxue, Hou Zengqian, Niu Yaoling, et al. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 96(1~2):225~242.
    Platt J P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks[J]. Geological society of America Bulletin, 97:1037~1053.
    Reinecke T. 1991. Very-high-pressure metamorphism and uplift of coesite-bearing metasediments from the Zermatt-Saas zone, Western Alps[J]. European Journal of Mineralogy, 3:7~17.
    Shreve R L and Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion[J]. Journal of Geophysical Research, 91:10229.
    Song Shuguang, Zhang Lifei, Niu Yaoling, et al. 2006. Evolution from oceanic subduction to continental collision:A case study from the Northern Tibetan Plateau based on geochemical and geochronological data[J]. Journal of Petrology, 47:435~455.
    Tsujimori T, Sisson V B, Liou J G, et al. 2006. Very-low-temperature record of the subduction process:A review of worldwide lawsonite eclogites[J]. Lithos, 92(3~4):609~624.
    Van Roermund H L M and Drury M R. 1998. Ultra-high pressure (P>6 GPa) garnet peridotites in western Norway:Exhumation of mantle rocks from N185 km depth[J]. Terra Nova, 10:295~301.
    Wang Qingchen and Cong Bolin. 1996. Tectonic implication of UHP rocks from the Dabie Mountains[J]. Science in China:Series D, 39:311~318.
    Wei Chunjing and Clarke G L. 2011. Calculated phase equilibria for MORB composition:A reappraisal of the metamorphic evolution of lawsonite eclogite[J]. Journal of Metamorphic Geology, 29(9):939~952.
    Wei Chunjing and Cui Ying. 2011. Metamorphic evolution during subduction and exhumation of crust:Evidence from phase equilibria modelling for high-and ultrahigh-pressure eclogites[J]. Acta Petrologica Sinica, 27(4):1067~1074(in Chinese with English abstract).
    Wei Chunjing, Powell R and Clarke G L. 2004. Calculated phase equilibria for low-and medium-pressure metapelites in the KFMASH and KMnFMASH systems[J]. Journal of Metamorphic Geology, 22:495~508.
    Wei Chunjing, Su Xiangli, Lou Yuxing, et al. 2009. A new interpretation of the conventional thermobarometry in eclogite:Evidence from the calculated PT pseudosections[J]. Acta Petrologica Sinica, 25(9):2078~2088(in Chinese with English abstract).
    Xu Zhiqin, Dilek Y, Cao Hui, et al. 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105:320~337.
    Yamato P, Agard P, Burov E, et al. 2007. Burial and exhumation in a subduction wedge:Mutual constraints from thermomechanical modeling and natural p-T-t data (Schistes Lustrés, western Alps)[J]. Journal of Geophysical Research, 112:B07410.
    Yang Jingsui, Xu Zhiqin, Geng Quanru, et al. 2006. A possible new HP/UHP(?)metamorphic in China:Discovery of eclogite in the Lhasa Terrane, Tibet[J]. Acta Geologica Sinica, 80:1787~1792(in Chinese with English abstract).
    Yang Jingsui, Xu Zhiqin, Li Zhaoli, et al. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences, 34(1):76~89.
    Yang Xianli, Zhang Lifei, Zhao Zhidan, et al. 2014. Metamorphic evolution of glaucophane eclogite from Sumdo, Lhasa block of Tibetan Plateau:Phase equilibria and metamorphic p-T path[J]. Acta Petrologica Sinica, 30:1505~1519(in Chinese with English abstract).
    Ye Kai, Cong Bolin and Ye Danian. 2000. The possible subduction of continental material to depths greater than 200 km[J]. Nature, 407:734~736.
    Yin An and Harrison T M, 2000. Geological evolution of the Himalayan-Tibet orogeny[J]. Annual Review of Earth and Planetary Sciences, 28:211~280.
    Zhang Cong, Bader T, Van Roermund H, et al. 2018. The metamorphic evolution and tectonic significance of the Sumdo HP-UHP metamorphic terrane, central-south Lhasa Block, Tibet[J]. Geological Society, London, Special Publications, 474, https://doi.org/10.1144/sp474.4
    Zhang Dingding, Zhang Lifei and Zhao Zhidan. 2011. A study of metamorphism of Sumdo eclogite in Tibet, China[J]. Earth Science Frontiers, 18:116~126(in Chinese with English abstract).
    Zheng Yongfei, Chen Yixiang, Dai Liqun, et al. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China:Earth Sciences, 58:1045~1069(in Chinese with English abstract).
    Zheng Yongfei, Fu Bin and Gong Bing. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 62(1~2):105~161.
    Zhu Dicheng, Mo Xuanxue, Zhao Zhidan, et al. 2009. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution:New perspective[J]. Earth Science Frontiers, 16(2):1~20(in Chinese with English abstract).
    Zhu Dicheng, Zhao Zhidan, Niu Yaoling, et al. 2011a. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 39(8):727~730.
    Zhu Dicheng, Zhao Zhidan, Niu Yaoling, et al. 2011b. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301(1~2):241~255.
    Zhu Dicheng, Zhao Zhidan, Niu Yaoling, et al. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23(4):1429~1454.
    附中文参考文献
    胡道功, 吴珍汉, 江万,等. 2005. 西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究[J]. 中国科学(D辑), 35(1):29~37.
    黄杰, 田作林, 张聪, 等. 2015. 拉萨地块松多榴辉岩的变质演化过程:NCKMnFMASHTO体系中相平衡关系[J]. 中国地质, 42(5):1559~1571.
    李继磊, 高俊, 王信水. 2017. 西南天山洋壳高压-超高压变质岩石的俯冲隧道折返机制[J]. 中国科学:地球科学, 47:23~39.
    李鹏, 张聪, 刘晓瑜, 等. 2017. 西藏新达多地区榴辉岩的变质过程研究及其对古特提斯俯冲带演化的限定意义[J]. 岩石学报, 33(12):3753~3765.
    魏春景, 崔莹. 2011. 地壳俯冲与折返过程的变质作用演化:来自高压-超高压榴辉岩相平衡模拟的证据[J]. 岩石学报, 27(4):1067~1074.
    魏春景, 苏香丽, 娄玉行, 等. 2009. 榴辉岩中传统地质温压计新解:来自pT视剖面图的证据[J]. 岩石学报, 25(9):2078~2088.
    杨经绥, 许志琴, 耿全如, 等. 2006. 中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地块中发现榴辉岩带[J]. 地质学报, 80(12):1787~1792.
    杨现力, 张立飞, 赵志丹, 等. 2014. 青藏高原拉萨地块松多蓝闪石榴辉岩的变质演化:相平衡及变质作用p-T轨迹[J]. 岩石学报, 30(5):1505~1519.
    张丁丁, 张立飞, 赵志丹. 2011. 西藏松多榴辉岩变质作用研究[J]. 地学前缘, 18(2):116~126.
    郑永飞, 陈伊翔, 戴立群, 等. 2015. 发展板块构造理论:从洋壳俯冲带到碰撞造山带[J]. 中国科学:地球科学, 45:711~735.
    朱弟成, 莫宣学, 赵志丹, 等. 2009. 西藏南部二叠纪和早白垩纪构造岩浆作用与特提斯演化:新观点[J]. 地学前缘, 16(2):1~20.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

申婷婷,张聪,田作林,李杨,杨经绥,2018,拉萨地块吉朗榴辉岩的岩石学研究及其对古特提斯洋壳俯冲折返过程的限定[J].岩石矿物学杂志,37(6):917~932. SHEN Ting-ting, ZHANG Cong, TIAN Zuo-lin, LI Yang, YANG Jing-sui,2018,Petrological studies of Jilang eclogite in the Lhasa terrane and its constraint on the subduction and exhumation processes of the Paleo-Tethys oceanic crust[J]. Acta Petrologica et Mineralogica,37(6):917~932.

Copy
Share
Article Metrics
  • Abstract:1146
  • PDF: 1708
  • HTML: 0
  • Cited by: 0
History
  • Received:May 10,2018
  • Revised:August 29,2018
  • Online: November 27,2018
Article QR Code