The petrogenesis and implications of Early Silurian rhyolite porphyry in Saier Mountain region of the northern part of West Junggar
CSTR:
Author:
Clc Number:

P588.14;P581

  • Article
  • | |
  • Metrics
  • |
  • Reference [115]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The Hebukesaier ophiolite was intruded by Early Silurian rhyolite porphyry in the Saier Mountain region of northern West Junggar. The rhyolite porphyries exhibit obviously high SiO2 (70.88%~73.36%), Al2O3 (14.30%~15.31%) and extremely low MgO (0.36%~1.09%) values, and display relatively high Sr and low Y values with high Sr/Y (22.26~78.42) and (La/Yb)N (20.27~24.24) ratios. Moreover, both rhyolite porphyries in the Saier Mountain and Early Silurian-Early Devonian adakitic rocks in the north of Xiemisitai Mountain show high positive εHf(t) values and young Hf model ages, and have low K2O values, Mg# values as well as compatible elements (Cr, Co, Ni). All these features prove that in Early Silurian-Early Devonian period these rocks in Saier Mountain and the north of Xiemisitai Mountain were formed by partial melting of lower juvenile crust rather than by subducted oceanic crust. From Early Ordovician to Early Devonian, the north of West Junggar underwent intra-oceanic subduction, arc-arc collision, the closure of the ocean and post-collisional extension processes. The ocean in the north of West Junggar might have been closed before Early Silurian, followed subsequently by post-collisional extension. In the post-collisional extension stage, the mantle-derived materials migrated upward and were mixed with juvenile crust-derived materials, forming a mixed magma chamber. Lots of 435~400 Ma A2-type granites, I-type granites and a small amount of adakitic rocks were derived from this mixed magma chamber, and then the massive vertical crustal accretion was completed in this period.

    Reference
    Atherton M P and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 362(6416):144~146.
    Barr J, Grove T L and Elkinstanton L. 2007. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive melt:coment and reply[J]. Geology, 35(1):351~354.
    Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 148(1~2):243~258.
    Bonin B. 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 97(1~2):1~29.
    Briand B, Bouchardon J, Capiez P, et al. 2002. Felsic (A-type) -basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures massif[J]. Geological Magazine, 139(3):291~311.
    Castillo P R. 2006. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 51(6):617~627(in Chinese).
    Castillo P R. 2012. Adakite petrogenesis[J]. Lithos, 134~135(3):304~316.
    Castillo P R, Janney P E and Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1):33~51.
    Chen Jiafu, Han Baofu, Ji Jianqing, et al. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 115(1~4):137~152.
    Chen Jiafu, Han Baofu, Zhang Lei, et al. 2015. Middle paleozoic initial amalgamation and crustal growth in the west junggar (NW China):constraints from geochronology, geochemistry and Sr-Nd-Hf-Os isotopes of calc-alkaline and alkaline intrusions in the Xiemisitai-Saier Mountains[J]. Journal of Asian Earth Sciences, 113:90~109.
    Chung Sunlin, Liu Dunyi, Ji Jianqing, et al. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31:1021~1024.
    Defant M J and Drummond M S. 1990. Derivartion of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 347(6294):662~665.
    Defant M J, Jackson T E, Drummond M S, et al. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica:An overview[J]. Journal of the Geological Society, 149(4):569~579.
    Douce P A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas[J]?Geological Society London Special Publications, 168(1):55~75.
    Du Houyuan and Chen Jiafu. 2017. The determination of Hoboksar ancient oceanic basin in West Junngar:Evidence from zircon U-Pb age and geochemistry of the Hoboksar ophiolitic mélange[J]. Acta Geologica Sinica, 91(12):2638~2650(in Chinese with English abstract).
    Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11):2033~2048.
    Gao Shan, Rudnick R L, Yuan Hong Ling, et al. 2004. Recycling lower continental crust in the North China craton[J]. Nature, 432(7019):892~897.
    Gao Xiaofeng, Guo Feng, Li Chaowen, et al. 2007. The genesis of two types of Late Mesozoic intermediate-felsic volcanic rocks in Lishui Basin, Lower Yangtze valley[J]. Acta Petrologica et Mineralogica, 26(1):1~12(in Chinese with English abstract).
    Gao Yongfeng. 2007. Lamproitic Rocks from a Continental Collision Zone:Evidence for Recycling of Subducted Tethyan Oceanic Sediments in the Mantle Beneath Southern Tibet[J]. Journal of Petrology, 48(4):729~752.
    Ge Wenchun, Lin Qiang, Sun Deyou, et al. 2000. Geochemical research into origins of two types of mesozoics in Daxing'Anling[J]. Earth Science(Journal of China University of Geoseiences), 25(2):172~179(in Chinese with English abstract).
    Geng Jianzhen, Li Huaikun, Zhang Jian, et al. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 30(10):1508~1513(in Chinese with English abstract).
    Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3):237~269.
    Gu Pingyang, Li Yongjun, Zhangbing, et al. 2009. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Sinica, 25(6):1364~1372(in Chinese with English abstract).
    Han Baofu, Guo Zhaojie and He Guoqi. 2010. Timing of major suture zones in North Xinjiang, China:Constraints from stitching plutons[J]. Acta Petrologica Sinica, 26(8):2233~2246(in Chinese with English abstract).
    Han Baofu, Ji Jianqing, Song Biao, et al. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China(Part I):Timing of post-collisional plutonism[J]. Acta Petrologica Sinica, 22(5):1077~1086(in Chinese with English abstract).
    Han Baofu, Guo Zhaojie, Zhang Zhicheng, et al. 2010. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin, 122(3):627~640.
    He Guoqi, Li Maosong and Zhou Hui. 2002. The stage of cratonization in the formation of continental lithosphere[J]. Earth Science Frontiers, 9(4):217~224(in Chinese with English abstract).
    Hou Zengqian, Gao Yongfeng, Qu Xiaoming, et al. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1~2):139~155.
    Huang Gang, Niu Guangzhi, Wang Xinlu, et al. 2016. Early Silurian adakitic rocks of East Junggar, Xinjiang:Evidence from zircon U-Pb age, geochemistry and Sr-Nd-Hf isotope of the quartz diorite[J]. Acta Petrologica et Mineralogical, 35(5):751~767(in Chinese with English abstract).
    Jahn Borming, Wu Fuyuan and Hong Dawei. 2000. Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia[J]. Journal of Earth System Science, 109(1):5~20.
    Jian Ping, Liu Duyi, Shi Yuruo, et al. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China:Implications for generation of oceanic crust in the Central Asian orogenic belt[A]. Sklyarov E V. Structural and Tectonic Correlation across the Central Asia Orogenic Collage:North-Eastern Segment;Guidebook and Abstract Volume of the Siberian Workshop IGCP-480[C]. Irkutsk:Institute of the Earth Crust, Siberian Branch of Russian Academy of Sciences, 246.
    Kay S M and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America[J]. Journal of Geology, 101(6):703~714.
    Lai Shaocong and Qin Jiangfeng. 2013. Adakitic rocks derived from the partial melting of subducted continental crust:Evidence from the eocene volcanic rocks in the northern qiangtang block[J]. Gondwana Research, 23(2):812~824.
    Le Maitre R W, Bateman P and Dudek A. 1989. A Classification of Igneous Rocks and Glossary of Terms:Recommendations of the IUGS, Subcommission on the Systematics of Igneous Rocks[M]. Oxford:Blackwell.
    Li Hang, Gong Zhichao, Dong Xianyang, et al. 1987. On the geological setting of basic and ultrabasic rocks and the characteristics of regional metallization (mainly chromite) in the west Junggar of Xinjiang, China[J]. Bulletin of the Xi'an Institute of Geology and Mineral Resources, CAGS, 18:3~122(in Chinese with English abstract).
    Li Wuping, Lu Fengxiang, Sun Shanping, et al. 2000. Discussion on the origin of volcanic rocks of Donglingtai Formation in Beijing Xishan Mountain and its geological setting[J]. Acta Petrologica Sinica, 16(3):345~352(in Chinese with English abstract).
    Liu Bo, Han Baofu, Ren Rong, et al. 2017. Petrogenesis and tectonic implications of the early carboniferous to the late permian Barleik plutons in the west junggar(NW China)[J]. Lithos, 272~273:232~248.
    Macpherson C G, Dreher S T and Thirlwall M F. 2006. Adakites without slab melting:high pressure differentiation of island arc magma, mindanao, the philippines[J]. Earth and Planetary Science Letters, 243(3~4):581~593.
    Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids[J]. Lithos, 46(3):411~429.
    Norrish K and Hutton J T. 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples[J]. Geochimica Et Cosmochimica Acta, 33(4):431~453.
    Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy & Petrology, 58(1):63~81.
    Qu Xiaoming, Hou Zengqian and Li Youguo. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau[J]. Lithos, 74(3):131~148.
    Riley T R, Leat P T, Pankhurst R J, et al. 2001. Origins of large volume Rhyolitic volcanism in the Antarctic peninsula and patag-onia bycrustal melting[J]. Journal of Petrology, 42(6):1043~1065.
    Rollison H R. 1993. Using Geochemical Data:Evaluation Presentation, Interpretation[M]. Singapore:Longman Singapore Publishers, 160~170.
    Shao Ji'an, Han Qingjun, Zhang Luqiao, et al. 1999. Two kinds of vertical accretion of the continental crust:An example of the Da Hinggan Mts[J]. Acta Petrologica Sinica, 15(4):600~606(in Chinese with English abstract).
    Shen Ping, Shen Yuanchao, Li Xianhua, et al. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China:A geochemical and geochronological approach[J]. Lithos, 140~141:103~118.
    Shinjo R and Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 54:117~137.
    Söderlund U, Patchett P J, Vervoort J D, et al. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3):311~324.
    Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and process[A]. Saunders A D and Norry M J. Magmatism in the Ocean Basins[C]. Geological Society Special Publications, 42:313~345.
    Sun Yong, Li Yongjun, Yang Gaoxue, et al. 2015. Geochemical and geological significance of the volcanic rocks in the west of the Xiemisitai Mountain, West Junggar[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2):387~394(in Chinese with English abstract).
    Taylor S R and Mclennan S M. 1985. The continental crust:Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks[J]. Journal of Geology, 94(4):632~633.
    Wang Jianguo, He Zhonghua and Xu Wenliang. 2013. Petrogenesis of rie-beckite rhyolites in the southern Da Hinggan Mts:Geohronological and geochemical evidence[J]. Acta Petrologica Sinica, 29(3):853~863(in Chinese with English abstract).
    Wang Jinrong, Jia Zhilei, Li Taide, et al. 2013. Discovery of Early Devonian adakite in West Junggar, Xinjiang:Implications for geotectonics and Cu mineralization[J]. Acta Petrologica Sinica, (3):840~852(in Chinese with English abstract).
    Wang Juli, Hu Yang, Wang Jianqi, et al. 2017. The discovery of Late Ordovician granodiorite in the Xiemisitai area, Xinjiang and its geological significance[J]. Acta Geologica Sinica-English Edition, 91(6):2327~2329.
    Wang Qiang, McDermott F, Xu Jifeng, et al. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 33(6):465~468.
    Wang Qiang, Wyman D A, Xu Jifeng, et al. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 272(1):158~171.
    Wang Qiang, Xu Jifeng, Jian Ping, et al. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1):119~144.
    Wang Qiang, Xu Jifeng, Zhao Zhenhua, et al. 2008. Tectonic setting and associated rock suites of adakitic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4):343~350(in Chinese with English abstract).
    Wang Zhangqi, Jiang Xiumin, Guo Jing, et al. 2014. Discovery of the Early Paleozoic volcanic rocks in the Xiemisitai area of the West Junggar, Xinjiang[J]. Geotectonica et Metallogenia, 38(3):670~685(in Chinese with English abstract).
    Whalen J B, Currie K L and Chappell B W. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4):407~419.
    Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2):185~220(in Chinese with English abstract).
    Xiao Wenjiao, Han Chunming, Sun Min, et al. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 32:102~117.
    Xu Jifeng, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 30(12):1111~1114.
    Xu Jifeng, Wu Jianbin, Wang Qiang, et al. 2014. Research advances of adakites and adakitic rocks in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):6~13(in Chinese with English abstract).
    Yan Xin and Xu Ronghua. 2001. Determination of Zr, Hf, Nb, Ta in rocks by ICP-MS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4):458~460(in Chinese with English abstract).
    Yang Gang, Xiao Long, Wang Guocan, et al. 2015. Geochronology, geochemistry and zircon Lu-Hf study of granites in western section of Xiemisitai area, Western Junggar[J]. Earth Science(Journal of China University of Geoseiences), (3):548~562(in Chinese with English abstract).
    Yang Gaoxue, Li Yongjun, Xiao Wenjiao, et al. 2015. OIB-type rocks within West Junggar ophiolitic mélanges:Evidence for the accretion of seamounts[J]. Earth-Science Reviews, 150(c):477~496.
    Yang Yaqi, Zhao Lei, Xu Qinqin, et al. 2018. Defining components of the Hebukesaier ophiolitic mélange in the northern West Junggar and its tectonic implication[J]. Acta Geologica Sinica, 92(2):298~312(in Chinese with English abstract).
    Yin Jiyuan, Chen Wen, Xiao Wenjiao, et al. 2017. Late Silurian-Early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China:Partial melting of mafic lower crust and implications for slab roll-back[J]. Gondwana Research, 43:55~73.
    Yin Jiyuan, Long Xiaoping, Yuan Chao, et al. 2013. A late Carboniferous-Early Permian slab window in the West Junggar of NW China:Geochronological and geochemical evidence from mafic to intermediate dikes[J]. Lithos, s175~176(5):146~162.
    Zhang Jiheng, Yang Jinhui, Chen Jingyuan, et al. 2018. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Provincesoutheast China:A crystal mush origin with mantle input[J]. Lithos, s296~299:482~495.
    Zhang Qi. 2011. Reappraisal of the origin of C-type adakitic rocks from East China[J]. Acta Petrologica et Mineralogica, 30(4):739~747(in Chinese with English abstract).
    Zhang Qi, Ran Hao and Li Chengdong. 2012. A-type granite:what is the essence?[J]. Acta Petrologica et Mineralogical, 31(4):621~626(in Chinese with English abstract).
    Zhang Qi, Wang Yan, Qian Qing, et al. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China[J]. Acta Petrologica Sinica, 17(2):236~244(in Chinese with English abstract).
    Zhang Yuanyuan and Guo Zhaojie. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection[J]. Acta Petrologica Sinica, 26(2):421~430(in Chinese with English abstract).
    Zhang Ruofei, Yuan Feng, Zhou Taofa, et al. 2015. Geological characteristicsgeochronology and geochemical characteristics of volcanic hydrothermal type copper deposits (points) in Taerbahatai-xiemisitai regionWest Junggar[J]. Acta Petrologica Sinica, 31(8):2259~2276(in Chinese with English abstract).
    Zhao Jun, Zhang Zuoheng, Zhang He, et al. 2013. Geochemistry petrogenesis and tectonic Settings of the Lower Permian series volcanic rocks from western Awulale Mountain, Xinjiang[J]. Acta Geologica Sinica, 87(4):525~541(in Chinese with English abstract).
    Zhao Lei and He Guoqi. 2013. Tectonic entities connection between West Junggar (NW China) and East Kazakhstan[J]. Asian Earth Science, 72(4):25~32.
    Zhao Lei and He Guoqi. 2014. Geochronology and geochemistry of the Cambrian(~518 Ma) Chagantaolegai ophiolite in northern West Junggar(NW China):Constraints on spatiotemporal characteristics of the Chingiz-Tarbagatai megazone[J]. International Geology Review, 56(10):1181~1196.
    Zhao Lei, He Guoqi and Zhu Yabing. 2013. Discovery and its tectonic significance of the ophiolite in the south of Xiemisitai MountainWest Junggar, Xinjiang[J]. Geological Bulletin of China, 32(1):196~202(in Chinese with English abstract).
    Zhu Yongfeng and Xu Xin. 2006. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts, Xinjiang, NW China[J]. Acta Petrologica Sinica, 22(12):2835~2842(in Chinese with English abstract).
    Zong Ruiwen, Wang Zizhang, Gong Yiming, et al. 2015. Ordovician radiolarians from the Yinisala ophiolitic melange and their significance in western Junggar, NW China[J]. Science China:Earth Sciences, 58(5):776~783.
    附中文参考文献
    Castillo P R.2006. 埃达克岩成因回顾[J]. 科学通报, 51(6):617~627.
    都厚远, 陈家富. 2017. 西准噶尔和布克赛尔古洋盆的厘定——来自和布克赛尔蛇绿混杂岩的锆石U-Pb年代学及地球化学证据[J]. 地质学报, 91(12):2638~2650.
    高晓峰, 郭峰, 李超文, 等. 2007. 溧水盆地两类晚中生代中酸性火山岩的岩石成因[J]. 岩石矿物学杂志, 26(1):1~12.
    葛文春, 林强, 孙德有, 等. 2000. 大兴安岭中生代两类流纹岩成因的地球化学研究[J]. 地球科学(中国地质大学学报), 25(2):172~179.
    耿建珍, 李怀坤, 张健, 等. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 30(10):1508~1513.
    辜平阳, 李永军, 张兵, 等. 2009. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 25(6):1364~1372.
    韩宝福, 郭召杰, 何国琦. 2010. "钉合岩体"与新疆北部主要缝合带的形成时限[J]. 岩石学报, 26(8):2233~2246.
    韩宝福, 季建清, 宋彪, 等. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5):1077~1086.
    何国琦, 李茂松, 周辉. 2002. 论大陆岩石圈形成过程中的克拉通化阶段[J]. 地学前缘, 9(4):217~224.
    黄岗, 牛广智, 王新录, 等. 2016. 新疆东准噶尔早志留世埃达克岩——来自锆石U-Pb年龄、地球化学及Sr-Nd-Hf同位素的证据[J]. 岩石矿物学杂志, 35(5):751~767.
    李伍平, 路凤香, 孙善平, 等. 2000. 北京西山东岭台组(J3)火山岩的成因及其构造环境探讨[J]. 岩石学报, 16(3):345~352.
    李行, 巩志超, 董显扬, 等. 1987. 新疆西准噶尔地区基性超基性岩生成地质背景及区域成矿特征[J]. 中国地质科学院西安地质矿产研究所所刊, 18:3~122.
    邵济安, 韩庆军, 张履桥, 1999. 陆壳垂向增生的两种方式:以大兴安岭为例[J]. 岩石学报, 15(4):600~606.
    孙勇, 李永军, 杨高学, 等. 2015. 西准噶尔谢米斯台山西缘火山岩岩石地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 34(2):387~394.
    王建国, 和钟铧, 许文良. 2013. 大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J]. 岩石学报, 29(3):853~863.
    王金荣, 贾志磊, 李泰德, 等. 2013. 新疆西准噶尔发现早泥盆世埃达克岩:大地构造及成矿意义[J]. 岩石学报, (3):840~852.
    王强, 许继峰, 赵振华, 等. 2008. 埃达克质岩的构造背景与岩石组合[J]. 矿物岩石地球化学通报, 27(4):343~350.
    王章棋, 江秀敏, 郭晶, 等. 2014. 新疆西准噶尔谢米斯台地区发现早古生代火山岩地层:野外地质学和年代学证据[J]. 大地构造与成矿学, 38(3):670~685.
    吴福元, 李献华, 郑永飞, 等. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2):185~220.
    许继峰, 邬建斌, 王强, 等. 2014. 埃达克岩与埃达克质岩在中国的研究进展[J]. 矿物岩石地球化学通报, 33(1):6~13.
    闫欣, 许荣华. 2001. 等离子体质谱法测定岩石中的锆、铪、铌、钽[J]. 矿物岩石地球化学通报, 20(4):458~460.
    杨钢, 肖龙, 王国灿, 等. 2015. 西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义[J]. 地球科学:中国地质大学学报, (3):548~562.
    杨亚琦, 赵磊, 徐芹芹, 等. 2018. 新疆新准噶尔北部和布克赛尔蛇绿混杂岩的厘定及其洋盆闭合时代限定[J]. 地质学报, 92(2):298~312.
    张旗. 2011. 关于C型埃达克岩成因的再探讨[J]. 岩石矿物学杂志, 30(4):739~747.
    张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4):621~626.
    张旗, 王焰, 钱青, 等, 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 17(2):236~244.
    张若飞, 袁峰, 周涛发, 等. 2015. 西准噶尔塔尔巴哈台-谢米斯台地区火山热液型铜矿床(点)地质及含矿火山岩年代学、地球化学特征[J]. 岩石学报, 31(8):2259~2276.
    张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 26(2):421~430.
    赵军, 张作衡, 张贺, 等. 2013. 新疆阿吾拉勒山西段下二叠统陆相火山岩岩石地球化学特征、成因及构造背景[J]. 地质学报, 87(4):525~541.
    赵磊, 何国琦, 朱亚兵. 2013. 新疆西准噶尔北部谢米斯台山南坡蛇绿岩带的发现及其意义[J]. 地质通报, 32(1):196~202.
    朱永峰, 徐新. 2006. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 22(12):2835~2842.
    纵瑞文, 王仔章, 龚一鸣, 等. 2014. 西准噶尔伊尼萨拉蛇绿混杂岩中奥陶纪放射虫的发现及意义[J]. 中国科学:地球科学, 44(10):2238~2246.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

杨亚琦,赵磊,郑荣国,徐芹芹,2018,新疆西准噶尔北部赛尔山地区早志留世流纹斑岩成因及其大地构造意义[J].岩石矿物学杂志,37(6):901~916. YANG Ya-qi, ZHAO Lei, ZHENG Rong-guo, XU Qin-qin,2018,The petrogenesis and implications of Early Silurian rhyolite porphyry in Saier Mountain region of the northern part of West Junggar[J]. Acta Petrologica et Mineralogica,37(6):901~916.

Copy
Share
Article Metrics
  • Abstract:1431
  • PDF: 1915
  • HTML: 0
  • Cited by: 0
History
  • Received:April 14,2018
  • Revised:September 10,2018
  • Online: November 27,2018
Article QR Code