Effects of microorganisms and clay minerals on carbonate mineral precipitation
Author:
Clc Number:

P579

  • Article
  • | |
  • Metrics
  • |
  • Reference [68]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To analyze the effects of microorganisms and clay minerals on the amount, mineral type, and mechanism of carbonate mineral precipitation, Cladosporium and illite, which can induce dolomite precipitation, were used as exogenous factors to simulate the conditions suitable for the survival of Cladosporium. The induced precipitation of carbonate minerals in marine solutions was investigated through an experiment, using a nutrient broth culture medium with Mg2+/Ca2+=8, at 30℃. The culture period was set to 1, 3, 5, 10, and 15 days. Following the culture, the pH value was recorded, and Mg2+ and Ca2+ concentrations were sampled and measured, whereupon the precipitates were collected for analysis via scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction to examine the effects of different precipitation systems on the precipitation of carbonate minerals. The experimental results revealed many types of precipitates underlying the microbial precipitation system, including high-magnesium calcite and micron-sized protodolomite minerals. In clay mineral precipitation, the precipitates comprised mainly high-magnesium calcite, calcite, and nanoscale protodolomite. In the co-precipitation system, where the results of multiple tests were similar to those obtained in the clay mineral system, the precipitates were primarily calcite and dolomite nanospheres, suggesting that clay minerals do not promote the formation of carbonate minerals induced by microorganisms. Therefore, as a microorganism, Cladosporium has a greater impact on the quantity and rate of carbonate mineral precipitation than illite, and this may be because microorganisms can continuously provide carbonate ions into the precipitation system solution, thus accelerating the precipitation of carbonate minerals.

    Reference
    Arahal D R, Márquez M C, Volcani B E, et al. 1999. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea[J]. International Journal of Systematic and Evolutionary Microbiology, 49(2): 521~530.
    Bontognali T R R, Vasconcelos C, Warthmann R J, et al. 2008. Microbes produce nanobacteria-like structures, avoiding cell entombment[J]. Geology, 36(8): 663~666.
    Bontognali T R R, Vasconcelos C, Warthmann R J, et al. 2012. Dolomite-mediating bacterium isolated from the sabkha of Abu Dhabi (UAE)[J]. Terra Nova, 24(3): 248~254.
    Braissant O, Decho A W, Dupraz C, et al. 2007. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 5(4): 401~411.
    Casado A I, Alonso-Zarza A M and La Iglesia Á. 2014. Morphology and origin of dolomite in paleosols and lacustrine sequences. Examples from the Miocene of the Madrid Basin[J]. Sedimentary Geology, 312: 50~62.
    Chen Anchao. 2020. Effects of Different Temperature and Mg-Ca Ratio on Microbial Carbonate Mineral Precipitation[D]. Chengdu: Chengdu University of Technology (in Chinese with English abstract).
    Chen Tao. 2012. Study on Microstructure Characteristics of Illite[M]. Beijing: Science Press(in Chinese with English abstract).
    Cuadros J, Diaz-Hernandez J L, Sanchez-Navas A, et al. 2016. Chemical and textural controls on the formation of sepiolite, palygorskite and dolomite in volcanic soils[J]. Geoderma, 271: 99~114.
    Díaz-Hernández J L, Sánchez-Navas A and Reyes E. 2013. Isotopic evidence for dolomite formation in soils[J]. Chemical Geology, 347: 20~33.
    Ding X L and Henrichs S M. 2002. Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments[J]. Marine Chemistry, 77(4): 225~237.
    Dittrich M and Obst M. 2004. Are picoplankton responsible for calcite precipitation in lakes?[J]. Ambio, 33(8): 559~564.
    Dupraz C, Reid R P, Braissant O, et al. 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96(3): 141~162.
    Gregg J M, Bish D L, Kaczmarek S E, et al. 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 62(6): 1 749~1 769.
    Jiang Qicai, Liu Bo, Guo Rongtao, et al. 2017. Microbial mechanism of lacustrine primary dolomite[J]. Journal of Palaeogeography (Chinese Edition), 19(2): 257~269 (in Chinese with English abstract).
    Köster M H and Gilg H A. 2015. Pedogenic, palustrine and groundwater dolomite formation in non-marine bentonites (Bavaria, Germany)[J]. Clay Minerals, 50(2): 163~183.
    Li Wei, Liu Liping, Cao Long, et al. 2009. Research status and prospect of biological precipitation of carbonate[J]. Advances in Earth Science, 24(6): 597~605 (in Chinese with English abstract).
    Lim A, Doyle B L, Kelly G M, et al. 2018. Characterization of a cathepsin D protease from CHO cell-free medium and mitigation of its impact on the stability of a recombinant therapeutic protein[J]. Biotechnology Progress, 34(1): 120~129.
    Liu D, Xu Y Y, Papineau D, et al. 2019a. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals[J]. Geochimica et Cosmochimica Acta, 247: 83~95.
    Liu D, Yu N, Papineau D, et al. 2019b. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 263: 31~49.
    Liu Lihong, Gao Yongjin, Wang Dandan, et al. 2021. The impact of gypsum salt rock on Cambrian subsalt dolomite reservoir in Tarim Basin[J]. Acta Petrologica et Mineralogica, 40(1): 109~120 (in Chinese with English abstract).
    Luo M, Chen Z Q, Shi G R, et al. 2016. Upper Lower Triassic stromatolite from Anhui, South China: Geobiologic features and paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 452: 40~54.
    Martín Pérez A, Alonso-Zarza A M, La Iglesia Á, et al. 2015. Do magnesian clays play a role in dolomite formation in alkaline environments? An example from Castañar Cave, Cáceres (Spain)[J]. Geogaceta, 57: 15~18.
    Mather C C, Lampinen H M, Tucker M, et al. 2023. Microbial influence on dolomite and authigenic clay mineralization in dolocrete profiles of NW Australia[J]. Geobiology, 21(5): 644~670.
    Molnár Z, Pekker P, Dódony I, et al. 2021. Clay minerals affect calcium (magnesium) carbonate precipitation and aging[J]. Earth and Planetary Science Letters, 567: 116971.
    Polyak V J and Güven N. 2000. Authigenesis of trioctahedral smectite in magnesium-rich carbonate speleothems in Carlsbad cavern and other caves of the Guadalupe Mountains, new Mexico[J]. Clays and Clay Minerals, 48(3): 317~321.
    Qiu Hongxin, Chen Zherui and Wang Guanghui. 2020. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, (3): 197~202, 196 (in Chinese with English abstract).
    Qiu X, Wang H M, Yao Y C, et al. 2017. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52[J]. Earth and Planetary Science Letters, 472: 197~205.
    Rivadeneyra M A, Delgado G, Soriano M, et al. 2000. Precipitation of carbonates by Nesterenkonia halobia in liquid media[J]. Chemosphere, 41(4): 617~624.
    Rodriguez-Blanco J D, Shaw S and Benning L G. 2015. A route for the direct crystallization of dolomite[J]. American Mineralogist, 100(5~6): 1 172~1 181.
    Rong Xingmin, Huang Qiaoyun, Chen Wenli, et al. 2008. Interaction mechanisms of soil minerals with microorganisms and their environmental significance[J]. Acta Ecologica Sinica, 28(1): 376~387 (in Chinese).
    Santoro T and Stotzky G. 1967. Effect of electrolyte composition and pH on the particle size distribution of microorganisms and clay minerals as determined by the electrical sensing zone method[J]. Archives of Biochemistry and Biophysics, 122(3): 664~669.
    Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, et al. 2009. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 285(1~2): 131~139.
    Sánchez-Román M, Vasconcelos C, Schmid T, et al. 2008. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 36(11): 879~882.
    Slaughter M and Hill R J. 1991. The influence of organic matter in organogenic dolomitization[J]. Journal of Sedimentary Research, 61(2): 296~303.
    Tian Zhiyu, Li Fuchun and Li Yong. 2014. Optimization of measuration method for bacterial number absorbed on the surface of clay minerals[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(6): 778~783 (in Chinese with English abstract).
    Tong Xiaoguang, Zhang Guangya, Wang Zhaoming, et al. 2018. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 45(4): 727~736(in Chinese).
    van Lith Y, Vasconcelos C, Warthmann R, et al. 2002. Bacterial sulfate reduction and salinity: Two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil)[J]. Hydrobiologia, 485(1): 35~49.
    Vasconcelos C and Mckenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 67(3): 378~390.
    Vasconcelos C, McKenzie J A, Bernasconi S, et al. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 377: 220~222.
    Wanas H A and Sallam E. 2016. Abiotically-formed, primary dolomite in the mid-Eocene lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: An approach to the role of smectitic clays[J]. Sedimentary Geology, 343: 132~140.
    Wang Yong, Liu Peijie, Meng Xingping, et al. 2023. Changes of pH value and major cations in solution mediated by microorganisms during carbonate mineral synthesis and their geological significance[J]. Mineralogy and Petrology, 43(1): 118~130 (in Chinese with English abstract).
    Wright D T. 1999. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia[J]. Sedimentary Geology, 126(1~4): 147~157.
    Wu Tao, Chen Jun and Lian Bin. 2007. Advance in studies on the function of microbes to the weathering of silicate minerals[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 26(3): 263~268, 275 (in Chinese with English abstract).
    Yan X H, Wei L B, Meng Q, et al. 2021. A study on the mechanism of calcium ion in promoting the sedimentation of illite particles[J]. Journal of Water Process Engineering, 42: 102153.
    Ye Desheng. 1985. Research status of diagenesis of carbonate rocks abroad[J]. Mineralogy and Petrology, 5(4): 106~114 (in Chinese with English abstract).
    You Donghua, Wang Liang, Hu Wenxuan, et al. 2018. Formation of deep dolomite reservoir of Well TS1: Insights from diagenesis and alteration investigations[J]. Acta Petrologica et Mineralogica, 37(1): 34~46 (in Chinese with English abstract).
    Yu Bingsong, Dong Hailiang, Jiang Hongchen, et al. 2007. Discovery of spheric dolomite aggregations in sediments from the bottom of Qinghai Lake and its significance for dolomite problem[J]. Geoscience, 21(1): 66~70 (in Chinese with English abstract).
    Zheng Jianfeng, Shen Anjiang, Yang Hanxuan, et al. 2021. Geochemistry and geochronology characteristics and their geological significance of microbial dolomite in Upper Sinian, NW Tarim Basin[J]. Acta Petrologica Sinica, 37(7): 2 189~2 202 (in Chinese with English abstract).
    Zhong Ningning and Qin Yong. 1995. Organic Petrology of Carbonate Rocks: Micro-component Characteristics, Genesis, Evolution and Its Relationship with Oil and Gas [M]. Beijing: Science Press (in Chinese with English abstract).
    Zou Xiang, Sun Shiyong, Lin Sen, et al. 2017. An experimental study of co-culturing marine clay minerals and Emiliania huxleyi[J]. Acta Petrologica et Mineralogica, 36(2): 274~280 (in Chinese with English abstract).
    附中文参考文献
    陈安超. 2020. 不同温度、镁钙比对微生物成因碳酸盐矿物沉淀的影响[D]. 成都: 成都理工大学.
    陈 涛. 2012. 伊利石的微结构特征研究[M]. 北京: 科学出版社, 1~123.
    蒋启财, 刘 波, 郭荣涛, 等. 2017. 湖相原生白云石的微生物成因机理探讨[J]. 古地理学报, 19(2): 257~269.
    李 为, 刘丽萍, 曹 龙, 等. 2009. 碳酸盐生物沉积作用的研究现状与展望[J]. 地球科学进展, 24(6): 597~605.
    刘丽红, 高永进, 王丹丹, 等. 2021. 塔里木盆地寒武系膏盐岩对盐下白云岩储层的影响[J]. 岩石矿物学杂志, 40(1): 109~120.
    邱鸿鑫, 陈浙锐, 王光辉. 2020. 水分子在伊利石表面的吸附作用机理分析[J]. 矿产综合利用, (3): 197~202, 196.
    荣兴民, 黄巧云, 陈雯莉, 等. 2008. 土壤矿物与微生物相互作用的机理及其环境效应[J]. 生态学报, 28(1): 376~387.
    田智宇, 李福春, 李 永. 2014. 细菌在黏土矿物表面吸附量测定方法的优化[J]. 矿物岩石地球化学通报, 33(6): 778~783.
    童晓光, 张光亚, 王兆明, 等. 2018. 全球油气资源潜力与分布[J]. 石油勘探与开发, 45(4): 727~736.
    王 勇, 刘沛杰, 孟兴平, 等. 2023. 微生物介导碳酸盐矿物合成过程中溶液pH值及主要阳离子变化及其地质意义[J]. 矿物岩石, 43(1): 118~130.
    吴 涛, 陈 骏, 连 宾. 2007. 微生物对硅酸盐矿物风化作用研究进展[J]. 矿物岩石地球化学通报, 26(3): 263~268, 275.
    叶德胜. 1985. 国外碳酸盐岩成岩作用研究现状[J]. 矿物岩石, 5(4): 106~114.
    尤东华, 王 亮, 胡文瑄, 等. 2018. 从成岩-蚀变特征探讨塔深1井白云岩储层成因[J]. 岩石矿物学杂志, 37(1): 34~46.
    于炳松, 董海良, 蒋宏忱, 等. 2007. 青海湖底沉积物中球状白云石集合体的发现及其地质意义[J]. 现代地质, 21(1): 66~70.
    郑剑锋, 沈安江, 杨翰轩, 等. 2021. 塔里木盆地西北缘震旦系微生物白云岩地球化学、年代学特征及其地质意义[J]. 岩石学报, 37(7): 2 189~2 202.
    钟宁宁, 秦 勇. 1995. 碳酸盐岩有机岩石学: 显微组分特性、成因、演化及其与油气关系[M]. 北京: 科学出版社.
    邹 翔, 孙仕勇, 林 森, 等. 2017. 海洋粘土矿物与颗石藻Emiliania huxleyi共培养的实验研究[J]. 岩石矿物学杂志, 36(2): 274~280.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

贺海燕,王勇,刘沛杰,孟兴平,施泽进,田亚铭,2025,微生物与黏土矿物对碳酸盐矿物沉淀的影响[J].岩石矿物学杂志,44(1):194~206. HE Hai-yan, WANG Yong, LIU Pei-jie, MENG Xing-ping, SHI Ze-jin, TIAN Ya-ming,2025,Effects of microorganisms and clay minerals on carbonate mineral precipitation[J]. Acta Petrologica et Mineralogica,44(1):194~206.

Copy
Share
Article Metrics
  • Abstract:28
  • PDF: 409
  • HTML: 0
  • Cited by: 0
History
  • Received:September 17,2023
  • Revised:April 18,2024
  • Online: January 15,2025
Article QR Code