Regional geochemical element background characteristics and prospecting prediction of the Gangdese-Himalayan orogenic system in Xizang
Author:
Clc Number:

P618.41

  • Article
  • | |
  • Metrics
  • |
  • Reference [109]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Background value of geochemical elements is an important geochemical index for regional prospecting prediction. The Gangdese-Himalayan orogenic system in Xizang was selected to collate and clean the regional geochemical data. The outliers were iterated using the mean value (X) plus and minus three times standard deviation (S) as the threshold value, and the median (m) of the remaining data was calculated to find out the background values and enrichment characteristics of 39 elements in different secondary units, then the prospecting prediction was made. The results show that the geochemical background of 39 elements of Gangdese-Himalaya in Xizang is highly varied and differentially enriched. Metallogenic elements such as Li, Be, Sn, W, Au, Sb, Pb and Zn are enriched in the Himalayan terrane, while Au and Cr are mainly enriched in the Yarlung Zangbo River suture zone. The Ladakh-Gangdese-Chayu arc basin system is enriched with Cu, Mo, Pb, Zn, Au, Ag and other ore-forming elements, and the enrichment degree increases gradually from north to south. The comprehensive analysis shows that the different tectonic-magmatic evolution processes of different tectonic units lead to the differential enrichment of elements, and then develop different types of mineralization. On this basis, according to the combination characteristics of elements, 7 prospecting prospects of class Ⅰ, 9 prospecting prospects of class Ⅱ and 17 prospecting prospects of class Ⅲ are delineated. The results of the study have certain guiding significance for the new round of prospecting strategy breakthrough action.

    Reference
    Cao H W, Pei Q M, Yu X, et al. 2023. Discovery of the large-scale Eocene Xiwu Pb-Zn-Ag deposit in the Tethyan Himalaya: Geochronology, geochemistry, and C-H-O-S-Pb-Sr-Nd isotopes[J]. Gondwana Research, 124: 165~187.
    Chen H J, Sun X M, Li D F, et al. 2022. In situ apatite U-Pb dating for the ophiolite-hosted Nianzha orogenic gold deposit, Southern Tibet[J]. Ore Geology Reviews, 144: 104811.
    Cheng Zhizhong, Xie Xuejin, Pan Hanjiang, et al. 2011. Abundance of elements in stream sediment in South China[J]. Earth Science Frontiers, 18(5): 289~295 (in Chinese with English abstract).
    Chung S L, Chu M F, Zhang Y Q, et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 68(3~4): 173~196.
    Dewey J F, Cande S C and Pitman W C. 1989. Tectonic evolution of the India/Eurasia collision zone[J]. Eclogae Geologicae Helvetiae, 82(3): 717~734.
    Domeier M and Torsvik T H. 2014. Plate tectonics in the Late Paleozoic[J]. Geoscience Frontiers, 5(3): 303~350.
    Du Peixuan and Tian Surong. 2001. Average background values of elements in rocks, debris and stream sediments of Xinjiang Region[J]. Geophysical and Geochemical Exploration, 25(2): 117~122 (in Chinese with English abstract).
    Duan J L, Tang J X and Lin B. 2016. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals[J]. Ore Geology Reviews, 78: 58~68.
    Guo Weikang, Li Guangming, Fu Jiangang, et al. 2023. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet[J]. Earth Science Frontiers, 30(5): 275~297 (in Chinese with English abstract).
    Jiang S H, Nie F J, Hu P, et al. 2009. Mayum: An orogenic gold deposit in Tibet, China[J]. Ore Geology Reviews, 36(1): 160~173.
    Kapp P and DeCelles P G. 2019. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 319(3): 159~254.
    Kapp P, DeCelles P G, Leier A L, et al. 2007. The Gangdese retroarc fold-thrust belt revealed[J]. Abstracts with Programs—Geological Society of America, 17(7): 4~9.
    Kürzl H. 1988. Exploratory data analysis: Recent advances for the interpretation of geochemical data[J]. Journal of Geochemical Exploration, 30(1): 309~322.
    Lan Q, Hu R Z, Bi X W, et al. 2024. In-situ analysis of sphalerite trace elements and sulfur isotope of the Zhaxikang Pb-Zn-Sb-Ag deposit in Southern Tibet: Implications for source and mineralization process[J]. Ore Geology Reviews, 167: 105976.
    Li Guangming, Duan Zhiming, Huang Yong, et al. 2017a. Geology and Mineralization of Gangdese-Himalaya, Tibet[M]. Wuhan: China University of Geosciences Press, 1~47 (in Chinese).
    Li Guangming, Fu Jiangang, Guo Weikang, et al. 2022. Discovery of the Gabo granitic pegmatite-type lithium deposit in the Kulagangri Dome,eastern Himalayan metallogenic belt,and its prospecting implication[J]. Acta Petrologica et Mineralogica, 41(6): 1 109~1 119 (in Chinese with English abstract).
    Li Guangming, Zeng Qinggao, Yong Yongyuan, et al. 2005. Discovery of epithermal Au-Sb deposits in Gangdese metallogenic belt of Tibet and its significance: Case study of Longruri Au-Sb deposit[J]. Mineral Deposits, 24(6): 595~602 (in Chinese with English abstract).
    Li Guangming, Zhang Linkui, Jiao Yanjie, et al. 2017b. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet[J]. Mineral Deposits, 36(4): 1 003~1 008 (in Chinese with English abstract).
    Li Guangming, Zhang Linkui, Zhang Zhi, et al. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology, 41(2): 351~360 (in Chinese with English abstract).
    Li H F, Tang J X, Hu G Y, et al. 2019. Fluid inclusions, isotopic characteristics and geochronology of the Sinongduo epithermal Ag-Pb-Zn Deposit, Tibet, China[J]. Ore Geology Reviews, 107: 692~706.
    Li Hongliang, Huang Hai, Li Yuanling, et al. 2022. Geohazard effect of plate suture zone along Sichuan-Tibet Traffic Corridor[J]. Earth Science, 47(12): 4 523~4 545 (in Chinese with English abstract).
    Li Hongliang, Huang Hai, Zhang Yong, et al. 2024. Geological genesis model of red strata landslide in Qamdo, eastern Xizang[J]. Sedimentary Geology and Tethyan Geology, 44(3): 493~509 (in Chinese with English abstract).
    Li Hongliang and Li Guangming. 2019a. Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits[J]. Earth Science Frontiers, 26(3): 202~210 (in Chinese with English abstract).
    Li Hongliang, Li Guangming, Ding Jun, et al. 2020. Genesis of Zhaxikang Pb-Zn polymetallic deposit in Southern Tibet: Evidence from in situ S isotopes of sulfides[J]. Journal of Jilin University: Earth Science Edition, 50(5): 1 289~1 303 (in Chinese with English abstract).
    Li Hongliang, Li Guangming, Li Yingxu, et al. 2017. A study on ore geological characteristics and fluid inclusions of Jienagepu gold deposit in Zhaxikang ore concentration district, Southern Tibet, China[J]. Acta Mineralogica Sinica, 37(6): 684~696 (in Chinese with English abstract).
    Li Hongliang, Li Guangming, Liu Hong, et al. 2019b. Petrogenesis of paleocene granite porphyry of Daruo area in Western Lhasa Block, Tibet: Constraints from geochemistry, zircon U-Pb chronology and Sr-Nd-Pb-Hf isotopes[J]. Earth Science, 44(7): 2 275~2 297 (in Chinese with English abstract).
    Li Hongliang, Li Guangming, Zhang Zhi, et al. 2016. Ore-controlling factors and prospecting prediction of Zhaxikang Pb-Zn polymetallic deposit, Southern Tibet[J]. Metal Mine, 45(10): 103~108 (in Chinese with English abstract).
    Li Hongliang, Li Guangming, Zhang Zhi, et al. 2021. Genesis of Jienagepu gold deposit in Zhaxikang ore concentration area, Eastern Tethys Himalayas: Constraints from He-Ar and in-situ S isotope of pyrite[J]. Earth Science, 46(12): 4 291~4 315 (in Chinese with English abstract).
    Li Hongliang, Yang Dongxu, Tian You, et al. 2023. Genesis and its geodynamic significance of Late Cretaceous granites in North Lancang river suture[J] Earth Science, 48(4): 1 330~1 350 (in Chinese with English abstract).
    Lin Caihao and You Aizhen. 1996. Micro element content characteristics and minerogenetic prospect prediction of stream sediment in Fujian Province[J]. Geology and Exploration, 32(5): 33~36 (in Chinese with English abstract).
    Liu Chi, Zhang Hua, Tang Zhengjiang, et al. 2013. Statistics of series of geochemical parameters for the forest swamp landscape in China[J]. Geophysical and Geochemical Exploration, 37(4): 585~590 (in Chinese with English abstract).
    Liu H, Huang H X, Li G M, et al. 2023. Subduction-related Late Triassic Luerma porphyry copper deposit, Western Gangdese, Tibet, China: Evidence from geology, geochemistry, and geochronology[J]. Ore Geology Reviews, 154: 105253.
    Liu Hong, Li Guangming, Huang Hanxiao, et al. 2019a. Sources of ore-forming materials of Luerma porphyry copper (gold) deposit, western Gangdise[J]. Mineral Deposits, 38(3): 631~643 (in Chinese with English abstract).
    Liu Hong, Zhang Linkui, Huang Hanxiao, et al. 2019b. Origin and evolution of ore-forming fluids in Luerma porphyry copper (gold) deposit from Western Gangdese[J]. Earth Science, 44(6): 1 935~1 956 (in Chinese with English abstract).
    Liu Hong, Zhang Linkui, Huang Hanxiao, et al. 2020. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdisi: Fluid inclusion and H-O isotope evidence[J]. Earth Science Frontiers, 27(4): 49~65 (in Chinese with English abstract).
    Meng Yuanku, Yuan Haoqi, Wei Youqing, et al. 2022. Research progress and prospect of the Gangdese magmatic belt in Southern Tibet[J]. Geological Journal of China Universities, 28(1): 1~31 (in Chinese with English abstract).
    Ouyang Yuan, Liu Hong, Li Guangming, et al. 2023. Mineral search prediction based on Random Forest algorithm—A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. Geology in China, 50(2): 303~330 (in Chinese with English abstract).
    Pan G T, Wang L Q, Li R S, et al. 2012. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3~14.
    Pan Guitang, Wang Liquan, Zhang Wanping, et al. 2013. Geotectonic map and Description of the Qinghai-Tibet Plateau and its Adjacent Areas (1∶1 500 000)[M]. Beijing: Geological Publishing House, 1~155 (in Chinese).
    Qi Xuexiang, Li Tianfu, Meng Xiangjin, et al. 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault-fold belt in southern Tibet, and its constraint on antimony-gold polymetallic minerogenesis[J]. Acta Petrologica Sinica, 24(7): 1 638~1 648 (in Chinese with English abstract).
    Reimann C, Filzmoser P and Garrett R G. 2005. Background and threshold: Critical comparison of methods of determination[J]. Science of The Total Environment, 346(1): 1~16.
    Shi Changyi, Liang Meng and Feng Bin. 2016. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 41(2): 234~251 (in Chinese with English abstract).
    Sun X M, Wei H X, Zhai W, et al. 2016. Fluid inclusion geochemistry and Ar-Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, Southern Tibet, China[J]. Ore Geology Reviews, 74: 196~210.
    Tang Juxing. 2019. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent major metallogenic belts[J]. Acta Petrologica Sinica, 35(3): 617~624 (in Chinese with English abstract).
    Tang Juxing, Wang Qin, Yang Chao, et al. 2014. Two porphyry-epithermal deposit metallogenic subseries in Tibetan Plateau: Practice of "absence prospecting" deposit metallogenic series[J]. Mineral Deposits, 33(6): 1 151~1 170 (in Chinese with English abstract).
    Tang P, Tang J X, Wang L Q, et al. 2024. Apatite and zircon geochemistry deciphers difference in the nature of ore-forming magma in the Bangpu porphyry Mo-Cu deposit, Tibet[J]. Journal of Asian Earth Sciences, 264: 106049.
    Wang D, Zheng Y Y, Mathur R, et al. 2021. Zinc and cadmium isotopic constraints on ore formation and mineral exploration in epithermal System: A reconnaissance study at the Keyue and Zhaxikang Sb-Pb-Zn-Ag deposits in Southern Tibet[J]. Ore Geology Reviews, 139: 104594.
    Wang Liquan, Li Dingmou, Pan Guitang, et al. 2015. Minerals, Metallogenic Background and Specification of the Qinghai-Tibet Plateau (1∶1 500 000)[M]. Chengdu: Chengdu Map Publishing House, 1~173 (in Chinese).
    Wang Liquan, Pan Guitang, Ding Jun, et al. 2013. Geological map and Description of the Qinghai-Tibet Plateau and its Adjacent Areas (1∶1 500 000)[M]. Beijing: Geological Publishing House, 1~247 (in Chinese).
    Wang Qingfei, Deng Jun, Weng Weijun, et al. 2020. Cenozoic orogenic gold system in Tibet[J]. Acta Petrologica Sinica, 36(5): 1 315~1 354 (in Chinese with English abstract).
    Wang Yonghua. 2019. Geochemical Atlas of Southwest China[M]. Wuhan: China University of Geosciences Press, 1~188 (in Chinese).
    Xie Fuwei, Lang Xinghai, Tang Juxing, et al. 2022. Metallogenic regularity of Gangdese Metallogenic Belt, Tibet[J]. Mineral Deposits, 41(5): 952~974 (in Chinese with English abstract).
    Xie F W, Tang J X, Chen Y C, et al. 2018. Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, Southern Gangdese porphyry copper belt: Implications for petrogenesis and mineralization[J]. Ore Geology Reviews, 96: 98~114.
    Xie Xuejin, Ren Tianxiang, Xi Xiaohuan, et al. 2009. The implementation of the regional geochemistry-national reconnaissance program (RGNR) in China in the past thirty years[J]. Acta Geoscientia Sinica, 30(6): 700~716 (in Chinese).
    Xie Y L, Li L M, Wang B G, et al. 2017. Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in Southern Tibet, China: Evidence for a magmatic link[J]. Ore Geology Reviews, 80: 891~909.
    Xu Zhigang, Chen Yuchuan, Wang Denghong, et al. 2008. Scheme of Metallogenic Belt Division in China[M]. Beijing: Geological Publishing House, 1~111 (in Chinese).
    Xu Zhiqin, Li Haibing and Yang Jingsui. 2006. An orogenic plateau—the orogenic collage and orogenic types of the Qinghai-Tibet plateau[J]. Earth Science Frontiers, 13(4): 1~17 (in Chinese with English abstract).
    Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
    Zhai W, Sun X M, Yi J Z, et al. 2014. Geology, geochemistry, and genesis of orogenic gold-antimony mineralization in the Himalayan Orogen, South Tibet, China[J]. Ore Geology Reviews, 58: 68~90.
    Zhang X N, Li G M, Qin K Z, et al. 2020. Porphyry to epithermal transition at the Rongna Cu-(Au) deposit, Tibet: Insights from H-O isotopes and fluid inclusion analysis[J]. Ore Geology Reviews, 123: 103585.
    Zhang Zeming, Ding Huixia, Dong Xin, et al. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet[J]. Acta Petrologica Sinica, 35(2): 275~294 (in Chinese with English abstract).
    Zhang Z M, Ding L, Zhao Z D, et al. 2017. Tectonic evolution and dynamics of the Tibetan Plateau[J]. Gondwana Research, 41: 1~8.
    Zhang Z, Li G M, Zhang L K, et al. 2020. Genesis of the Mingsai Au deposit, Southern Tibet: Constraints from geology, fluid inclusions, 40Ar/39Ar geochronology, H-O isotopes, and in situ sulfur isotope compositions of pyrite[J]. Ore Geology Reviews, 122: 103488.
    Zhang Zhi, Li Guangming and Zhang Linkui. 2022. Exploration and research progresses of rare metals in Himalayan belt, Tibet[J]. Sedimentary Geology and Tethyan Geology, 42(2): 176~188 (in Chinese with English abstract).
    Zheng W B, Liu B L, Tang J X, et al. 2022. Exploration indicators of the Jiama porphyry-skarn deposit, Southern Tibet, China[J]. Journal of Geochemical Exploration, 236: 106982.
    Zheng X, Sun X, Li Q, et al. 2020. Genesis of the Bangbu gold deposit in the Southern Tibet: Evidenced from in-situ sulfur isotopes and trace element compositions of pyrite[J]. Ore Geology Reviews, 126: 103591.
    Zheng Youye, Sun Xiang, Tian Liming, et al. 2014. Mineralization, deposit type and metallogenic age of the gold antimony polymetallic belt in the eastern part of north Himalayan[J]. Geotectonica et Metallogenia, 38(1): 108~118 (in Chinese with English abstract).
    Zhu D C, Wang Q, Cawood P A, et al. 2017. Raising the Gangdese Mountains in Southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 122(1): 214~223.
    Zhu D C, Wang Q, Weinberg R F, et al. 2022. Interplay between oceanic subduction and continental collision in building continental crust[J]. Nature Communications, 13(1): 7 141.
    程志中, 谢学锦, 潘含江, 等. 2011. 中国南方地区水系沉积物中元素丰度[J]. 地学前缘, 18(5): 289~295.
    杜佩轩, 田素荣. 2001. 新疆岩石·岩屑·水系沉积物元素背景平均值[J]. 物探与化探, 25(2): 117~122.
    郭伟康, 李光明, 付建刚, 等. 2023. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义[J]. 地学前缘, 30(5): 275~297.
    李光明, 段志明, 黄 勇, 等. 2017a. 西藏冈底斯-喜马拉雅地质与成矿[M]. 武汉: 中国地质大学出版社, 1~47.
    李光明, 付建刚, 郭伟康, 等. 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义[J]. 岩石矿物学杂志, 41(6): 1 109~1 119.
    李光明, 曾庆贵, 雍永源, 等. 2005. 西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义——以西藏弄如日金锑矿床为例[J]. 矿床地质, 24(6): 595~602.
    李光明, 张林奎, 焦彦杰, 等. 2017b. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 36(4): 1 003~1 008.
    李光明, 张林奎, 张 志, 等. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351~360.
    李洪梁, 黄 海, 李元灵, 等. 2022. 川藏交通廊道沿线板块缝合带地质灾害效应[J]. 地球科学, 47(12): 4 523~4 545.
    李洪梁, 黄 海, 张 勇, 等. 2024. 藏东昌都红层滑坡的地质成因模式[J]. 沉积与特提斯地质, 44(3): 493~509.
    李洪梁, 李光明. 2019a. 不同类型热液金矿床主成矿期黄铁矿成分标型特征[J]. 地学前缘, 26(3): 202~210.
    李洪梁, 李光明, 丁 俊, 等. 2020. 藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 50(5): 1 289~1 303.
    李洪梁, 李光明, 李应栩, 等. 2017. 藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征[J]. 矿物学报, 37(6): 684~696.
    李洪梁, 李光明, 刘 洪, 等. 2019b. 拉萨地体西段达若地区古新世花岗斑岩成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束[J]. 地球科学, 44(7): 2 275~2 297.
    李洪梁, 李光明, 张 志, 等. 2016. 藏南扎西康铅锌多金属矿床控矿因素及找矿预测[J]. 金属矿山, 45(10): 103~108.
    李洪梁, 李光明, 张 志, 等. 2021. 特提斯喜马拉雅东段扎西康矿集区姐纳各普金矿床成因: 黄铁矿He-Ar及原位S同位素约束[J]. 地球科学, 46(12): 4 291~4 315.
    李洪梁, 杨东旭, 田 尤, 等. 2023. 北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义[J]. 地球科学, 48(4): 1 330~1 350.
    林才浩, 尤爱珍. 1996. 福建省微量元素含量特征及成矿远景预测[J]. 地质与勘探, 32(5): 33~36.
    刘 驰, 张 华, 汤正江, 等. 2013. 我国森林沼泽景观区地球化学系列参数统计[J]. 物探与化探, 37(4): 585~590.
    刘 洪, 李光明, 黄瀚霄, 等. 2019a. 冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究[J]. 矿床地质, 38(4): 631~643.
    刘 洪, 张林奎, 黄瀚霄, 等. 2019b. 冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化[J]. 地球科学, 44(6): 1 935~1 956.
    刘 洪, 张林奎, 黄瀚霄, 等. 2020. 冈底斯西段罗布真浅成低温热液型银金矿的成矿流体演化: 来自流体包裹体、H-O同位素的证据[J]. 地学前缘, 27(4): 49~65.
    孟元库, 袁昊岐, 魏友卿, 等. 2022. 藏南冈底斯岩浆带研究进展与展望[J]. 高校地质学报, 28(1): 1~31.
    欧阳渊, 刘 洪, 李光明, 等. 2023. 基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩-浅成低温热液型铜多金属矿为例[J]. 中国地质, 50(2): 303~330.
    潘桂棠, 王立全, 张万平, 等. 2013. 青藏高原及邻区大地构造图及说明书(1∶1 500 000)[M]. 北京: 地质出版社, 1~155.
    戚学祥, 李天福, 孟祥金, 等. 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 24(7): 1 638~1 648.
    史长义, 梁 萌, 冯 斌. 2016. 中国39种元素系列背景值[J]. 地球科学, 41(2): 234~251.
    唐菊兴. 2019. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J]. 岩石学报, 35(3): 617~624.
    唐菊兴, 王 勤, 杨 超, 等. 2014. 青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其"缺位找矿"之实践[J]. 矿床地质, 33(6): 1 151~1 170.
    王立全, 李定谋, 潘桂棠, 等. 2015. 青藏高原矿产及成矿背景及说明书(1∶1 500 000)[M]. 成都: 成都地图出版社, 1~173.
    王立全, 潘桂棠, 丁 俊, 等. 2013. 青藏高原及邻区地质图及说明书(1∶1 500 000)[M]. 北京: 地质出版社, 1~247.
    王庆飞, 邓 军, 翁伟俊, 等. 2020. 青藏高原新生代造山型金成矿系统[J]. 岩石学报, 36(5): 1 315~1 354.
    王永华. 2019. 中国西南地区地球化学图集[M]. 武汉: 中国地质大学出版社, 1~188.
    谢富伟, 郎兴海, 唐菊兴, 等. 2022. 西藏冈底斯成矿带成矿规律[J]. 矿床地质, 41(5): 952~974.
    谢学锦, 任天祥, 奚小环, 等. 2009. 中国区域化探全国扫面计划卅年[J]. 地球学报, 30(6): 700~716.
    徐志刚, 陈毓川, 王登红, 等. 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社, 1~111.
    许志琴, 李海兵, 杨经绥. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 13(4): 1~17.
    张泽明, 丁慧霞, 董 昕, 等. 2019. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 35(2): 275~294.
    张 志, 李光明, 张林奎. 2022. 西藏喜马拉雅带稀有金属矿勘查与研究进展[J]. 沉积与特提斯地质, 42(2): 176~188.
    郑有业, 孙 祥, 田立明, 等. 2014. 北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代[J]. 大地构造与成矿学, 38(1): 108~118.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李洪梁,刘洪,黄勇,郑强,黄岗,2024,西藏冈底斯-喜马拉雅造山系区域地球化学元素背景特征及找矿预测[J].岩石矿物学杂志,43(6):1484~1512. LI Hong-liang, LIU Hong, HUANG Yong, ZHENG Qiang, HUANG Gang,2024,Regional geochemical element background characteristics and prospecting prediction of the Gangdese-Himalayan orogenic system in Xizang[J]. Acta Petrologica et Mineralogica,43(6):1484~1512.

Copy
Share
Article Metrics
  • Abstract:55
  • PDF: 245
  • HTML: 0
  • Cited by: 0
History
  • Received:August 12,2024
  • Revised:October 22,2024
  • Online: November 20,2024
  • Published: November 25,2024
Article QR Code