# 浙西开化石龙头金矿含金黄铁矿的成分标型及 硫同位素特征研究

曹素巧<sup>1</sup>,贾锦生<sup>1,2</sup>,钟增球<sup>1</sup>,洪汉烈<sup>1</sup>,王朝文<sup>1</sup> 殷 科<sup>1</sup> 程 峰<sup>1</sup>,叶 菡<sup>1</sup>

(1. 中国地质大学 地球科学学院,湖北 武汉 430074;2. 浙江省第三地质大队,浙江 金华 321001)

摘 要:浙西开化石龙头金矿位于皖浙赣断褶带中,矿体明显受断裂控制。为了解含金黄铁矿的矿物学特征及其对 金矿化作用的指示,对矿床中黄铁矿进行了X射线衍射、电子探针及其硫同位素分析。结果显示,矿石中主要金属 矿物为黄铁矿和毒砂,含少量褐铁矿和磁黄铁矿,脉石矿物有石英、绢云母、伊利石和白云石等。黄铁矿的 Fe/(S+ As)值在0.777~0.886之间,平均为0.828,说明其在中深部环境生成 Co含量(64×10<sup>-6</sup>~111×10<sup>-6</sup>)及 Au/Ag 值 (3.6~17.8)指示其形成于中低温环境 Co/Ni值为1.95~4.47,平均为3.59,指示其为热液成因,较高的As含量和 As=Co=Ni相对含量三角图显示成矿流体与岩浆热液有关,具有地下热卤水的特征;硫同位素值介于6.14‰~ 8.27‰之间,偏离陨石硫的范围,而与超镁铁质岩的硫同位素值相近,表明成矿流体来自深部,后期受壳源物质影响。 关键词:浙西,石龙头金矿,黄铁矿,成分标型,硫同位素

中图分类号:P578.2<sup>+</sup>92;P597<sup>+</sup>.2

文献标识码 A

文章编号:1000-6524(2014)05-0937-10

# Composition and sulfur isotope characteristics of auriferous pyrite from the Shilongtou gold deposit in Kaihua, western Zhejiang Province

CAO Su-qiao<sup>1</sup>, JIA Jin-sheng<sup>1,2</sup>, ZHONG Zeng-qiu<sup>1</sup>, HONG Han-lie<sup>1</sup>, WANG Chao-wen<sup>1</sup>, YIN Ke<sup>1</sup>, CHENG Feng<sup>1</sup> and YE Han<sup>1</sup>

 Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China; 2. No. 3 Geological Party of Zhejiang Province, Jinhua 321001, China)

Abstract: The Shilongtou gold deposit in Kaihua of western Zhejiang lies in the Anhui-Zhejiang-Jiangxi faultfold belt, with its orebodies obviously controlled by regional faults. In order to understand the mineralogy of pyrite and the indicator of gold mineralization, the authors studied the pyrite by using X-ray diffraction (XRD) analysis, electron microprobe analysis and sulfur isotopic composition analysis. The results show that major metal minerals are pyrite and arsenopyrite, with minor limonite and pyrrhotite, whereas gangue minerals are dominated by quartz, sericite, illite and dolomite. Electron microprobe analyses of auriferous pyrite show that the (Fe)/(S+As) ratios are between 0.777 and 0.886, indicating that it formed at the middle to shallow depth. Co content is relatively low ( $64 \times 10^{-6} \sim 111 \times 10^{-6}$ ), and Au/Ag ratios vary from 3.6 to 17.8, suggesting that it formed in a low temperature environment. Co/Ni ratios are between 1.95 and 4.47, with an average of 3.59, indicating its hydrothermal genesis. The high As content and the As – Co – Ni ternary diagram show that

收稿日期:2014-03-06;修订日期:2014-07-20

基金项目:国家自然科学基金项目(41012030 A0872038);高等学校博士学科点专项科研基金资助课题(20110145110001);国家自然科 学基金项目(41072030,40872038)

作者简介:曹素巧(1989-),女,硕士研究生,主要从事金矿床研究,E-mail:903552406@qq.com;通讯作者:钟增球,E-mail:zqzhong @cug.edu.cn。

the hydrothermal fluid was related to primary magmatic activity, with a nature of underground thermal brine. Sulfur isotope values vary from 6.14% to 8.27%, similar to those of ultramafic rocks from deep crust, with the values affected by crustal sulfur at the later stage.

Key words: western Zhejiang; Shilongtou gold deposit; pyrite; typomorphic characteristics; sulfur isotope

在金矿床中,黄铁矿是最常见的金属矿物之一, 它往往作为金的伴生矿物或者载金矿物产出(Boyle, 1979)。研究表明、含金黄铁矿的地球化学及同位素 地球化学特征可以指示黄铁矿的形成条件,从而成 为金矿成因的指示矿物(李红兵等,2005)。黄铁矿 的成分标型具有重要的地质意义,比如黄铁矿中 As 含量和 Fe/(S+As)值(质量分数比值,下同)与其形 成深度具相关性(郇伟静等, 2011);微量元素 Co 含 量和 Au/Ag 值可以反映一定的成矿温度( 宋学信 等,1986;周学武等,2005)Co/Ni值可以反映黄铁 矿的成因类型(宋学信等, 1986), As-Co-Ni 相对含 量对成矿热液的类型具有一定的指示作用(周文雅, 2001)等。 近年来 疏同位素地球化学方法 广泛应用 于黄铁矿成因的研究(汪在聪等, 2010),因为硫是 黄铁矿中铁元素的主要沉淀剂,不同成因黄铁矿中 硫同位素值相差较大,而不同范围的硫同位素值可 以指示硫的不同源区,从而可以推测成矿流体的来 源(郑永飞等,2000;严育通等,2012)。

浙江地区发育多处硫化物石英脉型金矿床,主 要赋存在元古宙和中生代的火山岩区(邵洁涟等, 1987;徐国风等,1987)。研究表明,黄铁矿为该区 主要的载金矿物 ,硫同位素值显示为地幔硫或地壳 深部硫(丰淑庄等,1985),矿物包裹体标型特征指 示金矿形成于中低温环境,其形成与岩浆及火山活 动密不可分(邵洁涟等,1986)。了解金矿床的成因 对于金矿的远景预测和开采利用具有重大意义,而 最主要的载金矿物——黄铁矿的标型分析是研究该 类金矿床成因的一个最有效方法。浙江开化石龙头 金矿是近年来发现的金矿床,位于浙江省西部开化 县境内 矿床中金主要呈显微-次显微状赋存在黄铁 矿和毒砂中,矿石中毒砂含量较低,而黄铁矿含量相 对较高,易于挑选和实验。除浙江省第三地质大队 20世纪初对开化石龙头金矿进行过勘探外,本项目 首次对该金矿床进行系统、高精度的测试分析,利用 X射线衍射分析的方法研究了矿石的成分和相对含 量 在此基础上 进一步通过黄铁矿的主量和微量元 素地球化学特征和硫同位素分析来讨论含金黄铁矿 形成时的物理化学条件和成矿物质来源,旨在探讨

该区金矿的成因机制 ,为该区金矿的选冶回收和进 一步找矿提供有效的新信息。

## 1 区域地质及矿床地质

研究区位于江南造山带东南缘的皖浙赣地体边 界汇聚带内(图1a)。矿区内构造以断裂为主,其中 北东向的下庄-石柱断裂(皖浙边界断裂在浙西开化 地区的一部分)是矿区规模最大的断裂,贯穿整个矿 区。断裂上盘(北西侧)出露前震旦系浅变质岩系, 下盘(南东侧)为奥陶-震旦系沉积岩,为一陡倾角的 推覆构造。该断裂是本矿区最主要的控矿和容矿构 造构造具多期次活动特征。断裂带内发育强烈的 硅化、绢云母化和褐铁矿化。浙西开化石龙头金矿 区即位于下庄-石柱断裂带中段,物化探测表明,金 矿区范围呈与断裂带延伸方向一致的北东向条带 状,金矿(化)体赋存于该断裂中。

矿区出露地层有新元古界上墅组,震旦系南沱 组、陡山沱组、板桥山组以及奥陶系印渚埠组、宁国 组、胡乐组、砚瓦山组、黄泥岗组和长坞组下段(图 1b)。新元古界上墅组主要分布于下庄-石柱断裂带 的北西侧,为一套绿片岩相变质岩系,岩性为双峰式 火山岩夹变质粉砂岩;震旦系地层发育有粉砂质泥 岩、砂砾岩、白云质泥岩和白云岩,与上下地层均呈 断层接触;奥陶系是一套海相碎屑岩和碳酸盐沉积, 分布在下庄-石柱断裂带的南东侧,岩性主要为炭质 -硅质泥岩、瘤状灰岩、钙质-灰质泥岩以及粉砂质泥 岩等。

研究区内岩浆岩发育,矿区及其外围发现有中酸性岩体(图1b),主要发育在主构造带及其旁侧构造中。岩性主要为石英霏细斑岩、闪长玢岩和微晶闪长岩。岩脉长度一般为100m左右,宽度2~15m,走向北东,少数近南北向。矿区南西段的下庄-石柱主断裂带的近顶板处有一处石英霏细斑岩脉(图1b),长度大于500m,宽度15m左右,倾向北西,倾角70°~85°,岩脉走向延伸较稳定,未见构造破坏特征,而断裂具多期次活动特征,初步说明该岩脉属较晚期侵入。岩石呈斑状结构,块状构造,斑晶成分以石

英为主,次为长石,基质为霏细长英质集合体。岩石 蚀变较弱,主要是绢云母化和高岭土化。该岩脉未 见金矿化。

浙西开化石龙头金矿严格受区内北东向断裂带 控制,该金矿已圈定 I 号、II 号、II 号和IV号矿体,它 们都赋存在石龙头断裂的矿化蚀变带中。其中 I 号、II 号矿体是石龙头金矿的主要矿体(图 1b),主要 呈狭长状分布在矿床的西南部和中部。 I 号矿体长 680 m,厚 1.8~30.8 m,平均约 7.01 m。 II 号矿体 长 620 m,厚 1.2~3.95 m,平均约 2.99 m。矿体呈 脉状产于构造碎裂蚀变带中,由于构造作用的多期 次性和不均一性,使同一条矿化带中的矿体呈断续 分布,并具分叉复合的特征。矿化体走向较稳定,呈 北东 40°~45°展布,倾向北西,倾角约 75°。赋矿岩 石为糜棱岩(片理化岩)和碎裂岩,原岩成分多为变 质泥岩、变质泥质粉砂岩和泥晶白云岩等。岩石受 多期的应力作用,被强烈挤压破碎、碎裂,定向构造 较发育,以碎裂程度高、糜棱岩化强、蚀变显著(黄铁 矿化、绢云母化和硅化)为特征。而围岩破碎和蚀变 程度则较弱,矿体与围岩的界线较清楚。围岩蚀变 主要类型为绢云母化、硅化、褐铁矿化、黄铁矿化,次 为绿泥石化、高岭土化、碳酸盐化等,金矿化与绢云 母化、硅化和黄铁矿化关系尤为密切。



图 1 浙西开化构造分区图(a)与石龙头金矿矿区地质简图(b)(据浙江省第三地质大队, 2014)•

Fig. 1 Tectonic zoning map of Kaihua, west Zhejiang Province (a) and geological sketch map of the Shilongtou gold deposit (b) (after No. 3 Geological Party of Zhejiang, 2014)<sup>①</sup>

F1—江绍断裂带(板块分界线); F2—祁门-潜口断裂; F3—伏川-顺溪断裂; F4—绩溪-宁国断裂; F5—西天目山断裂; F6—屯溪-五城断裂; F7—三阳断裂; F8—皖浙边界断裂; F9—井潭断裂; F10—森村-大茅山断裂; F11—乐安江断裂; F12—赣东北断裂; F13—祁门-景德镇断裂; (1)—德兴地体; (Ⅱ)—怀玉地体; (Ⅲ)—伏川蛇绿岩套; 1—地质界线; 2—断层; 3—第四系; 4—奥陶系; 5—寒武系; 6—震旦系; 7— 青白口系; 8—石英斑岩; 9—矿体及钻孔位置

 $F_1$ —Jiangshao faulted zone (boundary of plate);  $F_2$ —Qimen-Qiankou faulted zone;  $F_3$ —Fuchuan-Shunxi faulted zone;  $F_4$ —Jixi-Ningguo faulted zone;  $F_5$ —Xitianmushan faulted zone;  $F_6$ —Tunxi-Wucheng faulted zone;  $F_7$ —Sanyang faulted zone;  $F_8$ —boundary of Anhui-Zhejiang faulted zone;  $F_9$ —Jingtan faulted zone;  $F_{10}$ —Sencun-Damaoshan faulted zone;  $F_{11}$ —Le'anjiang faulted zone;  $F_{12}$ —Gandongbei faulted zone;  $F_{13}$ —Qimen-Jingdezhen faulted zone; ())—Dexing terrane; ())—Huaiyu terrane; ())—Fuchuan ophiolite suite: 1— geological boundary; 2—fault; 3—Quaternary; 4—Ordovician; 5—Cambrian; 6—Sinian; 7—Qingbaikou System; 8—quartz porphyry; 9—location of orebody and drill hole

2 样品特征及矿石组成

本文采集金矿区[号和][号矿体中6个钻孔的金 矿石代表性样品 29件,共7.5kg。磨制光片、薄片各 13个,探针片3个,并研磨样品粉末若干。 野外观察及岩石光片、薄片鉴定可见,石龙头金 矿矿石主要为构造蚀变岩型矿石,一般呈灰白-浅黄 褐色,原岩性质多样,主要可见强烈蚀变石英斑岩质 碎裂岩(图 2a)和轻微变质细粒泥质或硅质砂岩(图 2b),有少量碎裂脉石英岩(图 2c)和糜棱岩化碎裂微 细粒英安岩(图2d)。金属矿物主要为黄铁矿(图2e、



图 2 矿石手标本(a)及矿石矿物单偏光下(b、c、d)、反光镜下(e、f、g、h)特征照片 Fig. 2 Photographs of hand specimen(a), microphotographs of ore minerals under plainlight (b, c, d) and under reflected light(e, f, g, h) 2f、2g )和毒砂(图 2h),含少量褐铁矿、磁黄铁矿和自 然金等,脉石矿物有石英、云母类矿物(绢云母和水 云母类矿物)和碳酸盐岩等。矿石普遍具碎裂结构, 塑性变形,定向构造较为发育。构造以块状构造、浸 染状构造为主,有时可见脉状构造,表现为石英、碳 酸盐岩短细脉充填在矿石的微细裂隙中。矿石中绢 云母化、硅化发育也较普遍。钻孔样品中可见黄铁 矿呈暗黄色,浸染状分布,有时粒状黄铁矿聚集成断 续的细脉状分布。野外露头很少见到黄铁矿化,褐 铁矿以黄铁矿假像呈稠密浸染状或条带状分布。

为了进一步了解矿石的成分,在详细的野外观察,显微镜下薄片、光片的鉴定基础上,对金异常较大的钻孔样品 YX38 粉碎,研磨至 200 目以下,进行

X 射线衍射分析。X 射线衍射分析实验在中国地质 大学地质过程与矿产资源国家重点实验室采用荷兰 帕纳科公司 XPertProDY2198 型 X 射线衍射仪上进 行 采用 CuKα 辐射 ,Ni 片滤波 ,工作电压为 35 kV , 电流为 30 mA ,光阑系统为 DS=SS=1°, RS=0122 mm ,扫描速度为 8°/s。衍射结果如图 3 所示。X 射 线衍射分析显示 ,矿石中主要矿物成分为石英、白云 石、伊利石、黄铁矿和毒砂等(图 3 )。根据不同矿物 特征峰的衍射强度及其对应的权重系数 ,使用 MID jade 5.0 软件对样品中各矿物含量进行半定量计算 , 结果表明 ,石英含量为 44% ,云母类矿物为 40% ,白 云石 8% ,黄铁矿和毒砂分别为 6%和 2%。







# 3 含金黄铁矿主微量标型及硫同位素 特征

#### 3.1 成分分析方法

前期的透射电镜能谱分析和电感耦合等离子体 发射光谱测试 ICP-OES )表明矿石中金主要呈显微 -超显微状赋存在黄铁矿和毒砂中。本次研究首先 通过扫描电子显微镜对主要载金矿物黄铁矿进行微 观形貌观察(图4),并利用电子探针分析方法研究载 金矿物的黄铁矿的化学组成特征。将制备好的光片 表面进行喷碳导电处理,然后进行电子探针分析。 分析工作在中国地质大学地质过程与矿产资源国家 重点实验室的日本 JEOL JMZ28100 型电子探针分 析仪上进行。利用 AuLα线进行面扫描观察发现 独 立的金矿物相对较少(或者金矿物粒度在检出限之 下),金主要赋存在黄铁矿和毒砂等硫化物中。本文 重点对矿石中不同晶形的黄铁矿进行了电子探针化 学成分分析 结果列于表 1。

3.2 黄铁矿的主微量特征

扫描电镜的二次电子像(图 4a、4b)显示,石龙头 金矿区黄铁矿的晶形主要有立方体和五角十二面 体,呈半自形和不规则粒状等,颗粒比较细小,一般 在 10~150 µm 之间,很少大于 500 µm。背散射像显 示(图 4c、4d、4e、4f),黄铁矿内部裂隙和空洞十分发 育,有的位于黄铁矿晶体内部,有的贯穿整个晶体, 同时可见毒砂与黄铁矿紧密共生。

黄铁矿的化学式为FeS2,理论上主要元素S和

为硫亏损。其余 8 个测点 S/Fe(原子比)均大于 2, 在 2.07~2.20 之间 表现为铁亏损(表 1)。

黄铁矿中的 Fe 常被其同族元素 Co 和 Ni 以类质 同像代替 S 常被 As 替代。从表 1 可见,该金矿中黄 铁矿的微量元素主要为 As, Co Ni, Au, Ag, Bi 和 Cr等。 含 As 量较高,在  $289 \times 10^{-6} \sim 1289 \times 10^{-6}$ 之间,平均 766×10<sup>-6</sup> Co 含量为  $64 \times 10^{-6} \sim 111 \times 10^{-6}$ ,平均为  $86 \times 10^{-6}$  除 1 个测点极低 达  $1 \times 10^{-6}$  外 Ni 含量在  $16 \times 10^{-6} \sim 40 \times 10^{-6}$ 之间,平均为  $23 \times 10^{-6}$ ; Co/Ni 值在  $1.95 \sim 4.47$ 之间,平均为 3.59; Au 含量为  $137 \times$  $10^{-6} \sim 232 \times 10^{-6}$ , Ag 含量为  $13 \times 10^{-6} \sim 51 \times 10^{-6}$ ; Au/Ag 值较高,在  $3.63 \sim 17.85$ 之间,平均达 7.55。 同时,黄铁矿中含有高温元素 Bi,含量在  $176 \times 10^{-6} \sim$  $293 \times 10^{-6}$ 之间,平均  $237 \times 10^{-6}$ 。

3.3 黄铁矿的硫同位素特征

硫同位素测试在中国地质大学地质过程与矿产 资源国家重点实验室完成,所用仪器为 MAT251,测 试方法及流程参见李新俊等(2002)。测试结果显 示 3 个钻孔样品中的黄铁矿硫同位素值分别为 6.14‰、6.88‰和8.27‰,平均为7.10‰。

# 4 讨论

#### 4.1 矿床成因探讨

金矿床中黄铁矿的粒度、晶体形态、主微量成分 和硫同位素值均能在一定程度上反映黄铁矿的含金 性及其形成时的物理化学条件,对其成因具有较好 的指示作用。研究表明,颗粒细小、裂隙发育的黄铁 矿含金性较好,因为它们具有较大的比表面积,更易 于从周围成矿流体中吸附金(李红兵等,2005)。该 区含金黄铁矿粒度细小,裂隙和空洞十分发育,晶体 形态常见五角十二面体和不规则粒状集合体,说明 其具有较好的含金性(宁钧陶等,2012)。

研究表明,黄铁矿中主成分含量及 Fe/(S+As) 值与其形成深度相关性较高,相关系数达 0.87,深部 产出的黄铁矿 Fe/(S+As)值为 0.846,中部为 0.863,浅部为 0.926(周学武等,2004,2005;郇伟 静等,2011)。表 1 中 12 个测点分析结果显示,本区 黄铁矿中 Fe/(S+As)值在 0.777~0.886之间,平 均为 0.828,说明其形成于中部至深部环境。对于内 生热液矿床,形成深度越浅,越贫 S,富 Fe,而形成深 度越深,则越富 S,贫 Fe(南京大学地质学系岩矿教 研室,1978)。本区黄铁矿中 S/Fe 值在 1.93~2.20 之间,平均为2.09,相对富S、贫Fe,也反映了该区黄铁矿的形成环境为中深部环境。

黄铁矿中的 Fe 常被其同族元素 Co 和 Ni 以类 质同像代替 ,As 常替代 S 元素。在热液高温阶段 , Co 比 Ni 更容易进入黄铁矿替代 Fe<sup>2+</sup> ,故成矿温度 越高 ,黄铁矿的 Co 含量越多 ,Co/Ni 值越大(李胜荣 等 ,1994 ;熊先孝等 ,2000 )。一般高温型黄铁矿 Co 含量高于1 000×10<sup>-6</sup> ,中温型在 100×10<sup>-6</sup>~1 000 ×10<sup>-6</sup> ,低温型小于 100×10<sup>-6</sup> (梅建明 ,2000 ; 郇 伟静等 ,2011 )。本区黄铁矿中 Co 含量为 64×10<sup>-6</sup> ~111×10<sup>-6</sup> ,平均为 86×10<sup>-6</sup> ,Co/Ni 值在 1.95~ 4.47 之间 ,平均为 3.59 ,指示其成矿温度不高 ,为中 低温环境。Au/Ag 值亦可以指示温度(周学武等 , 2005 ),高温热液型金矿床的黄铁矿中 Au/Ag 值小 于 0.5 ,中低温热液型则大于 0.5。本区黄铁矿 Au/ Ag 值为 3.6~17.8 ,平均为 7.55 ,远大于 0.5 ,也说 明该金矿床形成于中低温环境。

王奎仁(1989)总结了不同类型矿床中黄铁矿的 Co/Ni值特征 指出沉积型该值远小于 1 ,变质热液 型接近1,岩浆热液型为1~5,火山热液型为5以 上。宋学信等(1986)和李红兵等(2005)提出用 As-Co-Ni 质量分数三角图解来研究中国不同成因金矿 床中黄铁矿的划分。该区金矿床中黄铁矿 Co/Ni 值 在1.95~4.47 之间,平均为3.59,符合岩浆热液的 特征 ,黄铁矿中含有高温元素 Bi( 含量为 176×10<sup>-6</sup>  $\sim 293 \times 10^{-6}$  )也说明成矿热液继承了早期岩浆的特 征。但是典型的岩浆热液金矿形成温度较高 高温 元素 Co 含量较高,低温元素 As 较低。本文 Co/Ni 值投图位于热液成因区域(图 5a),接近沉积成因区 域,可能是深部热液上升过程中与上部沉积地层发 生交换反应的结果。本区黄铁矿含 As 量较高,在 289×10<sup>-6</sup>~1289×10<sup>-6</sup>之间,而Co,Ni含量较低, 在 As - Co - Ni 含量三角图上,集中于富砷贫钴贫镍 的地下热卤水淋滤区域,少量落入岩浆热液区(图 5b),说明成矿流体与深部岩浆作用有关,同时具有 地下热卤水的特征,可能是岩浆热液上升过程中加 入了大量深循环低温大气水使得其中 As 含量很高。 可见该矿床为中-低温热液型金矿床 ,黄铁矿形成于 中-深部环境。成矿流体与深部岩浆作用有关,具有 地下热卤水的特点,矿石中黄铁矿的硫同位素研究 也反映了成矿流体的这一特征。

### 4.2 成矿流体来源

硫同位素示踪可以反映成矿流体的来源。研究



图 4 石龙头金矿扫描电镜下含金硫化物照片

Fig. 4 Microphotographs of auriferous sulfide from the Shilongtou gold deposit

a、b一扫描电镜下长柱状毒砂(Apy)和不规则状黄铁矿(Py)集合体; c、d、e和f─黄铁矿横切面照片(有立方体、五角十二面体和不规则状)

a and b arsenopyrite (Apy) and aggregation of pyrite (Py) under SEM; c d, e and f photographs of pyrite cross-sections

(with cube, pentagonal dodecahedron and irregular shape)

# 表 1 黄铁矿电子探针主量和微量成分表

 Table 1
 Electron microprobe analyses of pyrite

| 晶形     | Fe    | S     | Λs    | Co  | Ni | Λu  | Λg | Bi  | Cr | 总量    | S/Fe | Co/Ni | $\Lambda u/\Lambda g$ |
|--------|-------|-------|-------|-----|----|-----|----|-----|----|-------|------|-------|-----------------------|
| 五角十二面体 | 46.60 | 52.48 | 289   | 83  | 19 | 182 | 26 | 216 | -  | 99.90 | 1.97 | 4.37  | 7.00                  |
|        | 46.05 | 51.60 | 1176  | 111 | 37 | 186 | 19 | 273 | 23 | 99.48 | 1.96 | 3.58  | 9.79                  |
|        | 46.45 | 51.64 | 883   | 88  | 23 | 162 | 19 | 188 | 7  | 99.46 | 1.95 | 3.83  | 8.53                  |
|        | 46.49 | 51.36 | 1 141 | 85  | 19 | 137 | 16 | 293 | 30 | 99.57 | 1.93 | 4.47  | 8.56                  |
| 立方体    | 43.50 | 53.68 | 537   | 94  | 22 | 202 | 45 | 176 | 41 | 98.28 | 2.16 | 4.27  | 4.49                  |
|        | 43.61 | 53.58 | 668   | 84  | 1  | 232 | 13 | 250 | 29 | 98.47 | 2.15 | 84.00 | 17.85                 |
|        | 43.04 | 52.37 | 663   | 86  | 31 | 185 | 51 | 217 | 21 | 96.66 | 2.13 | 2.77  | 3.63                  |
| 半自形    | 42.15 | 52.41 | 342   | 64  | 16 | 188 | 35 | 277 | 65 | 95.55 | 2.18 | 4.00  | 5.37                  |
|        | 42.56 | 53.40 | 325   | 78  | 40 | 183 | 41 | 244 | 15 | 96.89 | 2.20 | 1.95  | 4.46                  |
| 不规则状   | 42.22 | 53.01 | 1289  | 86  | 23 | 204 | 17 | 231 | 25 | 97.11 | 2.20 | 3.74  | 12.00                 |
|        | 42.75 | 53.22 | 901   | 69  | 18 | 155 | 32 | 253 | 47 | 97.45 | 2.18 | 3.83  | 4.84                  |
|        | 44.80 | 53.03 | 988   | 108 | 29 | 156 | 38 | 230 | 30 | 99.41 | 2.07 | 3.72  | 4.11                  |
| 平均值    | 44.19 | 52.65 | 766   | 86  | 23 | 181 | 29 | 237 | 28 | 98.19 | 2.09 | 3.59  | 7.55                  |

表中除 Fe<sub>s</sub>S 和总量的单位为%外,其余元素单位为  $1 \times 10^{-6}$ ; S/Fe 值为原子个数比, Co/Ni 和  $\Lambda_{U}/\Lambda_{B}$  值为质量分数比。

Fe 含量(质量分数,下同)应为 S 53.45%,Fe 46.55%,S/Fe(原子比)应为 2。电子探针主成分分 析结果显示,该金矿中黄铁矿 12 个测点的主要化学

成分 S、Fe 含量总体上接近或略低于理论值,S 51.36%~53.68%,Fe 42.15%~46.60%,S/Fe(原子比)有 4 个测点小于 2,在 1.93~1.97 之间,表现

表明,当成矿流体中  $f_{O_2}$ 较低时,硫主要呈低价态的 HS<sup>-</sup>和 S<sup>2-</sup>存在,成矿流体中的  $\delta^{34}S$  基本都富集于 硫化物中;当成矿流体中  $f_{O_2}$ 较高时,硫主要呈高价 态的 SO<sub>4</sub><sup>-</sup>存在,富集 $\delta^{34}S$  的硫酸盐的沉淀导致成矿 流体中<sup>34</sup>S 亏损,此时生成的硫化物中  $\delta^{34}S$  值低于成 矿热液中总的硫同位素值(Ohmoto, 1972; 郭利军 等,2009)。X 射线衍射分析显示,该区矿石中未发 育硫酸盐,含硫矿物主要为黄铁矿和毒砂等硫化物, 说明成矿体系的 $f_{O_2}$ 较低,硫化物中的  $\delta^{34}S$  特征可以 代表成矿流体中总硫  $\delta^{34}S_{\Sigma}$  的特征。来源于地幔的 硫与陨石硫同位素相似,变化于 0‰附近,受地壳再 循环组分影响,其变化范围在 - 6‰至 + 6‰之间 (Denies, 1995)。严育通等(2012)统计了各成因类 型金矿中黄铁矿的硫同位素特征,指出浅成低温热 液型金矿的硫同位素值为 - 0.4‰~11‰,与陨石和 超镁铁质岩硫同位素值相似,分异度小;岩浆热液型 硫同位素值为 0.9‰~13.63‰,类似花岗岩的硫同 位素特征,变化范围较前者大。本矿区 3 个钻孔样 品中的黄铁矿硫同位素值分别为 6.14‰、6.88‰和 8.27‰,变化范围较窄,平均为 7.10‰,表现为较低 的正值。这种特征偏离陨石硫同位素值,与超镁铁 岩的硫同位素值相近(图6),推测硫来自于深源地幔,



图 5 石龙头金矿床中黄铁矿的 Ni-Co分布图[a,底图据 Bajwah 等(1987)和 Brill(1989)]和 As-Co-Ni 三角图解 [b,底图据李红兵等(2005)]







Fig. 6  $\delta^{34}$ S characteristics of different natural sulfur substances (after Yan Yutong *et al.*, 2012)

后期受到壳源硫的影响。成矿物质可能与火山-岩 浆作用导致的地幔物质上涌有关,喷发过程中加入 了壳源物质的贡献,但又有别于典型的浅成低温热 液型金矿,可能与其形成深度较大有关。

综上所述,浙西开化石龙头金矿属于中低温热 液矿床。成矿流体具有地下热卤水的特征,可能为 深源岩浆上升过程中混入大量深循环大气水而形成 的。该区广泛的火山-岩浆活动可能为该金矿成矿 系统提供了矿源和热源,而区域上的深大断裂不仅 是成矿的有利部位,可能也是深部流体向上运移的 通道。

## 5 结论

(1)矿石中主要矿物成分为石英(44%) 云母
类矿物(40%) 白云石(8%) 黄铁矿(6%)和毒砂
(2%)。

(2)据 Fe/(S+As)值推断,黄铁矿形成于中深 部环境;Co含量、Au/Ag值表明其形成温度为中低 温 根据 Co/Ni值和 As-Co-Ni相对含量,推断该矿 床为热液成因。

(3)硫同位素测试表明该区黄铁矿中硫值表现 为低的正值,接近超镁铁质岩的硫同位素值,为深源 硫,说明成矿流体来自深源部位,上升过程中加入了 壳源物质的贡献。

#### References

- Bajwah Z U , Seccombe P K and Offler R. 1987. Trace element distribution , Co/Ni ratios and genesis of the Big Cadia iron-copper deposit , New South Wales , Australia J ]. Mineralium Deposita , 22:292~ 303.
- Boyle R. 1979. The geochemistry of gold and its deposits J J. Geological Survey Bulletin , 280 : 1~584.
- Brill B A. 1989. Trace element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit , Australia[J]. Can. Mineral , 27:263~274.
- Denies P. 1995. Sulfids inclusion chemistry and carbon isotopes of Africa diamond J ]. Geochemistry Cosmoch in Acta ,  $59:3171 \sim 3188$ .
- Feng Shuzhuang , Zuo Dahua and Mei Jianming. 1985. On the study of native gold and gold-bearing minerals from one gold deposit in Zhejiang province[J]. Geology and Prospecting , 21(1): 41 ~ 44( in Chinese ).

- Guo Lijun, Xie Yuling, Hou Zengqian, et al. 2009. Geology and ore fluid characteristics of the Bairendaba silver polymetallic deposit in InnerMongolia J. Acta Petrologica et Mineralogica, 28(1):26~ 36( in Chinese with English abstract ).
- Li Hongbing and Zeng Fanzhi. 2005. The Pyrite 's typomorphic characteristics in gold deposit[ J ]. Contributions to Geology and Mineral Resource Research , 20( 3 ): 199~203( in Chinese with English abstract ).
- Li Shengrong , Chen Guangyuan , Shao Wei , et al. 1994. Study of chemical characteristic of pyrites from Qingjinding gold deposit , Rushan , Jiaodong J ]. Gold Science and Technology , 2(6):7~12 ( in Chinese ).
- Li Xinjun and Liuwei. 2002. Fluid inclusion and stable isotope constraints on the genesis of the Mazhuangshan gold deposit, eastern Tianshan Mountains of China J]. Acta Petrologica Sinica, 18(4): 551~558( in Chinese with English abstract ).
- Mei Jianming 2000. Chemical typomorphic characteristic of pyrites from Zhilengtou gold deposit, Suichang, Zhejiang J]. Geoscience, 14(1):51–55(in Chinese with English abstract).
- Section of Petrology and Mineralogy, Department of Geology Nanjing University. 1978. Crystallography and Mineralogy M ]. Beijing : Geological Publishing House, 334~338( in Chinese ).
- Ning Juntao, Guo Xiyun, Fu Gonggong, et al. 2012. The marked characteristics of the pyrite of gold ore genesis and mineral exploratior[J]. Journal of East China institute of Technology, 35(4): 352~357( in Chinese with English abstract ).
- Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits J]. Economic Geology , 67(5):551~578.
- Shao Jielian and Mei Jianming. 1986. On the study of typomorphic characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance[J]. J. Mineral Petrol., 6(3): 103 ~ 111( in Chinese with English abstract).
- Shao Jielian and Mei Jianming. 1987. On the prospecting mineralogical study of pyrite from gold deposits of the volcanic terrain in Zhejiang province , China J l. Contributions to Geology and Mineral Resource Research ,  $\chi$  1):55~66( in Chinese with English abstract ).
- Song Xuexin and Zhang Jingkai. 1986. Minor elements in pyrites of various genetic types from China J Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences, (2): 166 ~ 175( in Chinese with English abstract ).
- Wang Kuiren. 1989. Genetic Mineralogy of Earth and Universe M ]. Hefei : Anhui Education Press( in Chinese ).
- Wang Zaicong , Liu Jianming , Liu Hongtao , et al. 2010. Complexity and uncertainty of tracing fluid sources by means of H-O , C , S , N

isotope systems : a case study of orogenic lode gold deposits J ]. Acta Petrologica et Mineralogica , 29( 5 ): 577  $\sim$  590( in Chinese with English abstract ).

- Xiong Xianxiao and Yao Chaomei. 2000. Mineralogy of pyrites from the Xiangshan iron and pyrite deposits, Anhui Province J J. Acta Petrologica et Mineralogica, 19(2): 189~192(in Chinese with English abstract).
- Xu Guofeng , Shao Jielian and Mei Jianming. 1987. On ore emplacement and prospecting guidelines of gold deposits in the volcanic terrain in Zhejiang , China J ]. Journal of Guilin College of Geology , 7(1):17 ~24( in Chinese with English abstract ).
- Xun Weijing , Yuan Wangming and Li Na. 2011. Study on the mineral electron microprobe evidence of the formation conditions and fission track of gold deposits in Ganzi-Litang gold belt , western Sichuan Province J]. Geoscience , 25(2):261~270( in Chinese with English abstract ).
- Yan Yutong , Li Shengrong , Jia Baojian , et al. 2012. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types [J]. Earth Science Frontiers , 19 (4):214~226 (in Chinese with English abstract ).
- Zheng Yongfei , Xu Baolong and Zhou Gentao. 2000. Geochemical studies of stable isotopes in mineral [J]. Earth Science Frontiers , 7(2): 299~320( in Chinese with English abstract ).
- Zhou Xuewu, Li Shengrong, Lu Li, et al. 2005. Study of pyrite typomorphic characteristics of Wulong quartz-vein-type gold deposit in Dandong, Liaoning Province, China J. Geoscience, 19(2):231 ~238( in Chinese with English abstract ).
- Zhou Wenya. 2001. Typomorphic peculiarities and significance of the pyrite in the veinlet-disseminated gold deposits J ]. Rock and Mineral Analysis ,  $20(2):100 \sim 104$  (in Chinese with English abstract ).
- Zhou Xuewu, Li Shengrong, Lu Li, et al. 2004. Research on typomorphism of pyrite from Nongkeng gold-silver mineralization district in Wuyi County, Zhejiang Province, China[J]. J. Mineral Petrol., 24(4):6~13(in Chinese with English abstract).

#### 附中文参考文献

- 丰淑庄,左大华,梅建明. 1985. 浙江某金矿床自然金和载金矿物的 研究 J]. 地质与勘探,21(1):41~44.
- 郭利军,谢玉玲,侯增谦,等.2009.内蒙古拜仁达坝银多金属矿矿 床地质及成矿流体特征[J].岩石矿物学杂志,28(1):26~36.
- 李红兵,曾凡治.2005.金矿中的黄铁矿标型特征[J]地质找矿论

- 丛,20(3):199~203.
- 李胜荣,陈光远,邵 伟,等. 1994. 胶东乳山金青顶金矿区黄铁矿 化学成分研究 []. 黄金科学技术,众6):7~12.
- 李新俊,刘 伟.2002.东天山马庄山金矿床流体包裹体和同位素地 球化学研究及其对矿床成因的制约[J].岩石学报,1%(4):551 ~558.
- 梅建明. 2000. 浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究 [J]. 现代地质,14(1):51~55.
- 南京大学地质学系岩矿教研室.1978.结晶学与矿物学[M].北京: 地质出版社,334~338.
- 宁钧陶,郭喜运,符巩固,等.2012. 黄铁矿的标型特征及其对金矿 床成因与找矿勘查的启示[J]. 东华理工大学学报,35(4):352 ~357.
- 邵洁涟,梅建明.1986.浙江火山岩区金矿床的矿物包裹体标型特征 研究及其成因与找矿意义[J].矿物岩石,(3):103~111.
- 邵洁涟,梅建明. 1987.浙江火山岩区金矿床黄铁矿的找矿矿物学研 究 J]. 地质找矿论丛, χ 1):55~66.
- 宋学信,张景凯.1986.中国各种成因黄铁矿的微量元素特征[J]. 中国地质科学院矿床地质研究所所刊,(2):166~175.
- 王奎仁 1989. 地球与宇宙成因矿物学[M]. 合肥:安徽教育出版 社.
- 汪在聪,刘建明,刘红涛,等.2010.稳定同位素热液来源示踪的复 杂性和多解性评述——以造山型金矿为例[J].岩石矿物学杂志,29(5):577~590.
- 熊先孝,姚超美. 2000. 向山地区铁、硫矿床中黄铁矿矿物学研究 [J]. 岩石矿物学杂志,19(2):189~192.
- 徐国风,邵洁涟,梅建明. 1987. 浙江火山岩区金矿床成矿作用和找 矿方向[J]. 桂林冶金地质学报,7(1):17~24.
- 郇伟静,袁万明,李 娜. 2011. 川西甘孜-理塘金矿带形成条件的 矿物电子探针与裂变径迹研究[J]. 现代地质,25(2):261~ 270.
- 严育通,李胜荣,贾宝剑,等. 2012. 中国不同成因类型金矿床的黄 铁矿成分标型特征及统计分析[J]. 地学前缘,19(4):214~ 226.
- 郑永飞,徐宝龙,周根陶. 2000. 矿物稳定同位素地球化学研究 J]. 地学前缘, 7(2): 299~320.
- 周学武,李胜荣,鲁力,等.2005.辽宁丹东五龙矿区石英脉型金 矿床的黄铁矿标型特征研究J].现代地质,19(2):231~238.
- 周文雅. 2001. 细微浸染型金矿床中黄铁矿的标型特征及意义[J]. 岩矿测试, 20(2):100~104.
- 周学武,李胜荣,鲁力,等.2004.浙江弄坑金银矿区黄铁矿成分 标型研究J].矿物岩石,24(4):6~13.