西藏伦坡拉盆地丁青湖组油页岩地球化学特征 及其地质意义

谢尚克¹² 杜佰伟¹² 王 剑¹² 董 宇³

(1. 成都地质矿产研究所,四川 成都 610081;2. 国土资源部沉积盆地与油气资源重点实验室,四川 成都 610081;
 3. 西藏地勘局 第六地质大队,西藏 拉萨 851400)

摘 要: 对伦坡拉盆地丁青湖组油页岩进行了系统采样和地球化学分析,结果显示该地区油页岩 SiO₂ 含量整体较低 K_2 O/Na₂O 值较高 $Al_2O_3 + Fe_2O_3$ 为 6.43% ~10.28% Al_2O_3 ($Na_2O + K_2O$)为 1.7~4.91 ,含有一定的铁镁质组分和较多的稳定组分,化学蚀变指数 CIA 为 65~85 ,Th/U 值多集中在 0.97~3.38 ,表明油页岩源区经历了相对中等的风化作用,反映温暖、湿润的气候条件, Sr/Ba 值为 0.45~0.82 ,V/(V+Ni)值为 0.46~0.68 ,Th/U 平均值为 0.59 表明丁青湖组油页岩形成于淡水缺氧的湖泊之中。温暖湿润的气候、丰富的生物来源及淡水缺氧的沉积环境 是伦坡拉盆地丁青湖组油页岩形成的重要条件。

关键词:伦坡拉盆地;丁青湖组 油页岩 地球化学 沉积环境 西藏 中图分类号:P618.12;P595 文献标识码:A

文章编号:1000-6524(2014)03-0503-08

Geochemical characteristics of oil shale member of Dingqinghu Formation in Lunpola Basin of Tibet and their geological implications

XIE Shang-ke^{1,2}, DU Bo-wei^{1,2}, WANG Jian^{1,2} and DONG Yu³

(1. Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, China; 2. Key Laboratory for Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources, Chengdu 610081, China; 3. Tibet Bureau of Geology and Mineral Resources, Lhasa 851400, China)

Abstract: Systematic sampling and geochemical analysis of the oil shale member of Dingqinghu Formation show that SiO₂ are low, K₂O/Na₂O ratios are relatively high, Al₂O₃ + Fe₂O₃ are in the range of $6.43\% \sim 10.28\%$, and Al₂O₃/(Na₂O + K₂O) values are between 1.7 and 4.91, indicating that the oil shale contains mafic components and more stable components. Chemical indexes of alteration (CIA) are between 65 and 85, and Th/U ratios are concentrated in the range of $0.97 \sim 3.38$, suggesting that the provenances of oil shale had experienced relatively moderate weathering and were in a warm and humid climate environment. Sr/Ba ratios are between 0.45 and 0.82, V/(V+Ni) ratios are between 0.46 and 0.68, and Th/U ratios have an average of 0.59, indicating that the oil shale was formed in a fresh water and anoxic lacustrine environment. Warm and humid climatic conditions, abundant biological sources, fresh water and anoxic environment were important for the formation of Lunpola oil shale.

Key words: Lunpola Basin; Dingqinghu Formation; oil shale; geochemistry; sedimentary environment; Tibet

收稿日期:2013-09-04;修订日期:2013-12-03

基金项目:国家油气专项"青藏高原重点盆地油气资源战略调查与选区(XQ-2009-1);青藏高原非常规油气调查(1212011221106);国家自然科学基金资助项目(40972087,41072088)

作者简介:谢尚克(1986 -),男,助理工程师,硕士,主要从事油气地质工作,E-mail:shangk86@163.com。

油页岩作为重要的油气资源替代产品,不仅可 以作为直接利用的能源物质,而且对盆地油气资源 潜力评价具有重要意义。根据最新资料显示,我国 油页岩资源丰富,页岩油储量巨大(刘招君等, 2005)。近年来随着研究程度的不断深入,西藏地区 发现多处油页岩(王成善等,2004;林金辉等, 2004;杜佰伟等,2004;李亚林等,2005,2010;王 剑等,2007;付修根等,2007a,2007b;汪正江等, 2007;Fu et al.,2012),但伦坡拉盆地的油页岩研 究程度很低。伦坡拉油页岩的研究不仅对于伦坡拉 盆地油气资源潜力评价具有重要意义,而且对于我 国陆相油页岩的勘探也具有一定的指导意义。笔者 对伦坡拉油页岩的微量元素地球化学特征进行了研 究结合沉积相特征及野外地质观察,探讨了其古气 候、古环境意义。

1 地质概况

伦坡拉盆地位于西藏自治区班戈县境内,面积 约3 600 km²,海拔4 600余米,是世界上海拔最高的 油气勘探区,也是西藏地区发育为数众多的古近系 陆相盆地中已知油气地质条件较好、勘探程度最高 的一个盆地,并最早获得了工业油气流(雷清亮等, 1996;王剑等,2004)。伦坡拉盆地是一个具有走滑 特征的断坳盆地,中间低而南北两侧较高,北部沉降 幅度大,沉积厚度大,向南呈斜坡状,呈不对称的箕 状,具有南北分带、东西分块的构造格局(雷清亮等, 1996;艾华国等,1998;王剑等,2004),如图1所 示。伦坡拉盆地是叠合盆地,其构造演化可分为始 新世的断陷期和渐新世的坳陷期两个阶段,分别接 受了牛堡组和丁青湖组两套沉积,形成两套粗-细-稍粗和红-黑-稍红的沉积旋回。牛堡组为一套棕红 色碎屑岩夹灰绿色泥页岩、灰白色泥灰岩,丁青湖组 为一套灰色、深灰色泥页岩、油页岩、泥灰岩夹细砂 岩的岩石组合。

伦坡拉盆地油页岩出露情况良好,主要分布于 伦坡日、蒋日阿错及爬错等地区。油页岩新鲜面为 深灰、灰黑色,风化后略显浅灰色,弱油脂光泽,岩石 质地轻,具有一定的韧性,用小刀能剥离出毫米级页 片且能用指甲划出光滑的条痕,油页岩呈薄的叶片 状或呈极薄片状产出。油页岩新鲜面具油气味,油 页岩可燃,燃烧时火焰长约1~2 cm,烟浓黑,并发出 浓烈的焦油臭味,油页岩颜色愈深者愈易燃烧。伦 坡拉油页岩总体表现为盆地中心厚、盆地边缘薄的 特点,油页岩单层厚度最大者大于4.2 m。笔者以油 页岩单层厚度最大的伦坡日油页岩剖面为研究对 象,对其微量元素特征进行了详细研究。该油页岩 剖面 GPS 坐标为:N:31°56′35.97″,E:89°47′ 49.02″ 高度4 641±5 m。剖面岩性组合特征简单, 主要为泥岩、油页岩、粉砂岩及细砂岩的组合(图 2)。

图 1 西藏伦坡拉盆地构造分区图(据杜佰伟等 2004) Fig. 1 Tectonic division of Lunpola Basin, Tibet (modified after Du Bowei *et al*., 2004)

图 2 伦坡日剖面丁青湖组地层特征及其元素比值

Fig. 2 Stratigraphic characteristics and vertical changes of geochemical indicators of Dingqinghu Formation along Lunpori section

2 样品选择和分析方法

在伦坡拉盆地伦坡日地区共采集丁青湖组油页 岩16件。为了降低地表现代有机物质的污染,减小 因生物降解对沉积有机质的影响,在采样时尽量采 集新鲜的岩石样品,并用小刀刮去泥灰岩、油页岩表 面相对松散的物质。样品在室温下自然风干,经缩 分混匀后,研磨至过200目尼龙筛,微量元素分析前 样品经HF-HClO₄-HNO₃消解处理,去离子水定容 后,用电感耦合等离子质谱仪(ICP-MS)测定元素含量(以干重计)。测试工作由国家地质实验测试中心 完成,分析精度优于95%。

3 结果与讨论

测试结果及分析见表 1,伦坡拉油页岩整体 SiO₂含量较低,含量变化范围较大,为 41.50% ~ 50.73%,平均值为 46.4%。MgO+Fe₂O₃ 为 6.43% ~10.28%,平均值为 8.15%,说明油页岩中含有一 定量的铁镁组分。K₂O 含量普遍比 Na₂O 高(K₂O/ Na₂O>1),表明油页岩中含有较多的钾长石或含钾 矿物。Al₂O₃/(CaO+Na₂O)值能反映泥岩中稳定组 分和不稳定组分的相对含量(顾雪祥等,2003),样品 Al₂O₃/(CaO+Na₂O)值为 1.7~4.91,平均为 2.49, 据此判断伦坡拉油页岩中稳定组分含量相对较高。

伦坡日剖面丁青湖组油页岩 Sr/Ba、Th/U、V/ (V+Ni)和 CIA 值分别在 0.45~0.82、0.97~ 3.38、0.46~0.68 和 63~73 之间,平均值分别为 0.64、1.98、0.59 和 68。

3.1 判断化学风化程度

泥岩中的化学成分能够提供源区风化作用的信息。Nesbitt等提出了以化学蚀变指数(CIA)来判断 源区的风化程度:CIA = $100 \times [Al_2O_3/(Al_2O_3 + CaO^* + Na_2O + K_2O)]$,式中各元素采用摩尔分数, 其中 CaO^{*} 仅指硅质矿物中 CaO 的摩尔分数(Nesbitt *et al*.,1982)。本次采用 Bock 等(1998)提出的 方法来确定泥岩中 CaO^{*} 的含量:当 CaO > Na_2O 时 CaO^{*} = Na_2O ;当 CaO \leq Na_2O 时 CaO^{*} = CaO.

CIA 值介于 50~60 之间,反映寒冷、干燥的气候条件下低等的化学风化程度;CIA 值介于 65~85 之间,反映温暖、湿润条件下中等的化学风化程度; CIA 值介于 85~100 之间,反映炎热、潮湿条件下强 烈的化学风化程度(Bock *et al*., 1998)。伦坡拉油 页岩 CIA 值介于 63~73 之间,反映温暖、湿润条件 下的 中等化学风化程度。在 Al_2O_3 - (Na_2O + CaO^*) - K_2O 图解中(图 3a),油页岩点群主要集中 在伊利石区,与 X 衍射分析伦坡拉盆地油页岩粘土 矿物类型基本一致,主要以伊利石为主(Fu *et al*., 2012)。

由于氧化作用和 U 的丢失,Th/U 比值随着风 化程度的增加而增加(McLennan *et al.*, 1993, 1995),当 Th/U>4,表明源岩区受风化作用的影响 (Murray *et al.*, 1991)。伦坡拉油页岩样品均在 Th/U = 4 之下,为 0.97~3.38 之间,平均值为 1.98,低于上地壳 Th/U 值(3.8)(图 3b),说明伦坡 拉盆地源岩区风化强度不高,是中等条件下的化学 风化。

3.2 微量元素

微量元素的富集程度与沉积环境密切相关(邓 宏文等,1993),其比值的变化、组合在一定程度上 反映着古气候。Sr/Ba值常作为古盐度的标志,用来 反映水体的盐度变化及相应的气候条件(史忠生等, 2003;常华进等,2009;谢尚克等,2010)。高值反 映高盐度或干旱气候,低值指示低盐度或温湿气候, 通常 Sr/Ba比值>1,指示海相咸水沉积,Sr/Ba比值 <1指示陆相淡水沉积。伦坡拉盆地油页岩的 Sr/ Ba值在0.45~0.82之间,平均值为0.64,显示了一 种淡水的湖泊环境。

Th/U值常被用作氧化还原条件的判别指标, Th 不受氧化还原条件的影响,通常以不能溶解的 Th⁴⁺形式存在,但 U 在还原条件下以不能溶解的 U⁴⁺形式存在,使得 U 在沉积物中富集,在氧化条件 下以可溶性的 U⁶⁺存在,导致 U 在沉积物中亏损, Th/U 值在缺氧的环境中为 0~2,在贫氧环境中为 2 ~8,在氧化环境中可达到 & 常华进等,2009)。伦坡 拉盆地油页岩的 Th/U 比值在 0.97~3.38 之间(图 2),平均值为 1.98,反映油页岩沉积时为缺氧环境。 V/(V+Ni)值也常被用作沉积环境的判别指标(常 华进等,2009)。V/(V+Ni)值在富氧环境下小于 0.45,在贫氧环境下居于 0.45~0.60 之间,而在缺 氧环境下大于 0.60(Kimura *et al.*,2001)。在伦坡 拉盆地中,V/(V+Ni)值在 0.46~0.68 之间(图 2),平均值为 0.59,反映油页岩沉积时为贫氧环境。

笔者通过野外剖面观察,发现伦坡拉盆地丁青 湖组油页岩颜色较深,大多为深灰-灰黑色,丁青湖 组以丁青湖组一段和二段出露地表较多,丁青湖组 三段因剥蚀,地表出露较少。该区油页岩沉积时期 几乎不受湖浪的影响,水平层理发育,水体多处于安 静的还原环境,沉积物多为暗色的泥质沉积夹油页 岩,少量为粉砂岩,有时见泥灰岩、灰岩沉积物。一 般缺乏底栖生物,化石以陆相介形虫类及轮藻生物 为主(杜佰伟等,2004;邓虎成等,2008),此外,笔者 还发现有螺、鱼等生物化石。结合油页岩中Sr/Ba、

果
府
3
11
A.
ж,
ir R
乾量
Ĕ
8
À
家
H
铅
R H
展
題
液
F
X
封目
坡日
华
-
表

Table 1 Major elements ($w_B/\%$) and trace elements ($w_B/10^{-6}$) analyses of oil shale from Dingginghn Formation in Luppori area

										5					3		1				
	SiO2	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	K_2O	Na2O	TiO ₂	P205	MnO	Λ	Ä	Th	þ	Ϋ́	Ba	Th/U	$(iN + N)/\Lambda$	Sr/Ba	V/Ni	CIA
L39-3	47.89	15.30	5.34	4.34	3.14	3.20	1.30	0.54	0.14	0.06	117.00	68.70	13.40	5.03	254.00	375.00	2.66	0.63	0.68	1.70	99
L39-4	45.07	15.47	4.91	6.40	2.25	3.30	0.93	0.56	1.35	0.07	107.00	58.30	13.90	8.59	359,00	461.00	1.62	0.65	0.78	1.84	70
L39-5	44.37	14.08	5.10	5.18	2.25	3.22	0.91	0.51	0.10	0.08	100.00	61.70	13.00	7.19	252.00	466.00	1.81	0.62	0.54	1.62	68
L39-6	49.34	15.40	5.82	4.98	2.28	3.27	0.73	0.56	0.23	0,08	110.00	77.60	13.50	6.66	256.00	480.00	2.03	0.59	0.53	1.42	72
L39-7	42.76	13.64	7.65	4.87	2.63	2.95	1.17	0.46	0.32	0.06	111.00	130.00	12.20	6.36	264.00	381.00	1.92	0.46	0.69	0.85	99
L39-10	46.97	15.99	5.73	5.06	2.55	3.61	1.56	0.53	0.63	0.06	127.00	82.60	14.3	4.95	285.00	418.00	2.89	0.61	0.68	1.54	64
L39-11	50.73	17.13	4.38	1.95	2.05	3.76	1.54	0.62	0.07	0.05	124.00	82.40	15.30	4.52	152.00	341.00	3.38	09.0	0.45	1.50	63
L39-12	46.57	15.73	5.83	5.39	2.40	3.33	1.46	0.58	0.16	0.08	107.00	80.70	14.40	7.87	223.00	385.00	1.83	0.57	0.58	1.33	65
L39-15	49.52	16.39	5.45	3.19	2.38	3.50	1.76	0.56	0.51	0.06	130.00	87.40	15.10	11.60	217.00	358.00	1.30	09.0	0.61	1.49	63
L39-16	41.50	13.76	6.19	7.50	3.00	2.98	0.59	0.42	0.14	0.07	111.00	87.40	11.10	7.46	259.00	400.00	1.49	0.56	0.65	1.27	73
L39-17	46.93	14.69	5.33	6.11	3.41	2.89	1.09	0.51	0.38	0.06	104.00	66.20	13.50	13.90	325.00	400.00	0.97	0.61	0.81	1.57	69
L39-18	46.06	14.30	5.62	6.08	2.99	3.00	0.99	0.49	0.17	0.07	101.00	80.50	12.00	6.78	277.00	398.00	1.77	0.56	0.70	1.25	69
I.39-19	44.62	14.81	5.66	6.74	2.90	3.06	0.97	0.46	0.16	0.07	107.00	79.70	12.40	8.27	307.00	374.00	1.50	0.57	0.82	1.34	69
L39-20	47.64	15.34	5.65	4.57	2.66	3.12	1.06	0.53	0.09	0.06	105.00	69.50	13.70	6.73	229.00	370.00	2.04	09.0	0.62	1.51	69
L39-21	43.47	14.82	5.24	6.74	2.38	3.35	0.94	0.49	0.24	0.07	107.00	66.70	15.10	7.50	258.00	433.00	2.01	0.62	0.60	1.60	69
L39-22	48.95	16.38	4.93	5.56	2.37	3.52	0.96	0.54	0.22	0.06	120.00	56.60	15.90	6.47	234.00	435.00	2.46	0.68	0.54	2.12	70

图 3 伦坡拉盆地丁青湖组油页岩的 Al₂O₃ -(Na₂O + CaO^{*})- K₂O(a , 底图据 Nebitt 和 Young , 1982)和 Th/U - Th (b 底图据 McLennan 等 , 1993)物源区图解

Fig. 3 Al₂O₃ (Na₂O + CaO^{*}) K₂O diagram (a , after Nebitt and Young , 1982) and Th/U – Th diagram (b , after McLennan *et al*., 1993) of oil shale from Dingqinghu Formation in Dunpola Basin

V/Ni和 Th/U 等元素比值 ,表明当时属于淡水缺氧 的湖泊环境 ,这种缺氧的湖泊底部为丁青湖组油页 岩有机质的堆积和保存提供了良好的条件。温暖湿 润的淡水湖泊适合各类生物的繁衍生长 ,能够提供 大量的有机质来源 ;而湖泊底部由于缺氧条件有利 于有机质的保存 ,一般湖底正在腐烂的有机质软泥 由上层水体的游泳-浮游生物所提供。

综合上述分析,伦坡拉盆地丁青湖组油页岩沉 积时期,温暖湿润的气候条件有利于大量浮游生物 及鱼类等的发育,缺氧的湖泊底部有利于有机质的 堆积与保存,以上条件是伦坡拉盆地丁青湖组发育 优质油页岩的重要原因。

4 结论

(1)伦坡拉油页岩 SiO₂ 含量整体较低 ,K₂O/ Na₂O 值较高 ,Al₂O₃ + Fe₂O₃ 及 Al₂O₃/(Na₂O + K₂O)比值 表明油页岩中含有一定的铁镁质组分和 较多的稳定组分。

(2)伦坡拉油页岩化学蚀变指数(CIA)及Th/U 值 表明油页岩经历了相对中等的风化作用,反映温 暖、湿润的气候条件;Sr/Ba、V/Ni及Th/U比值,表 明油页岩形成于缺氧的淡水湖泊之中。

(3)温暖湿润的气候、丰富的生物来源及淡水 缺氧的沉积环境是伦坡拉盆地丁青湖组油页岩形成 的重要条件。

References

- Ai Huaguo, Lan Linying, Zhu Hongquan, et al. 1998. Formation mechanism and petroleum geological features of Tertiary Lunpola Basin, Tiber J. Acta Petrolei Sinica, 19(2):21~27(in Chinese with English abstract).
- Bock B , McLennan S M and Hanson G N. 1998. Geochemistry and Provenance of the Middle Ordovician Austin Glen Member(Norman-Skill Formation) and the Taconian Orogeny in New England [J]. Sedimentology , 45:635~655.
- Chang Huajin, Chu Xuelei, Feng Lianjun, *et al*. 2009. Redox sensitive Trace elements as Paleoenvironments Proxies J. Geological Review, 55(1):91~99(in Chinese with English abstract).
- Deng Hongwen and Qian Kai. 1993. Sedimentary Geochemistry and Environment Analysis [M]. Lanzhou : Gansu Science and Technology Press(in Chinese).
- Deng Hucheng , Zhou Wen and Qiu Dongzhou. 2008. Oil sand resource latent capacity in Lunpola Basin , Tibet J]. Journal of Guilin University of Technology , 28 (2): 167~173 (in Chinese with English abstract).
- Du Bowei , Tan Fuwen and Chen Ming. 2004. Sedimentary features and petroleum geology of the Lunpola Basin , Xizang J]. Sedimentary Geology and Tethyan Geology , 24(4): $46 \sim 54$ (in Chinese with English abstract).
- Fu Xiugen , Wang Jian , Tan Fuwen , et al. 2012. Geochemistry of ter-

restrial oil shale from the Lunpola area , northern Tibet , China J J. International Journal of Coal Geology , 102 : 1~111.

- Fu Xiugen, Wang Jian, Wang Zhengjiang, et al. 2007a. Marine oil shale depositional environment of Qiangtang basin in northern Tibet [J]. Xinjiang Petroleum Geology, 28(5): 529 ~ 533(in Chinese with English abstract).
- Fu Xiugen , Wang Jian , Wang Zhengjiang , et al. 2007b. Biomarkers and sedimentary environment of Late Jurassic marine oil shale in Qiangtang basin , northern Xizang and its geological significance J]. Geochimica , 36(5):486~496(in Chinese with English abstract).
- Gu Xuexiang , Liu Jianming , Schulz O , et al. 1998. Formation mechanism and petroleum geological features of Tertiary Lunpola Basin , Tibet[J]. Acta Petrolei Sinica , 19(2): 21 ~ 27(in Chinese with English abstract).
- Kimura H and Watanabe Y. 2001. Ocean anoxia at the Precambrian-Cambrian boundary [J]. Geology, 29:995~998.
- Lei Qingliang , Fu Xiaoyue and Lu Yaping. 1996. Petroleum geological features of Tertiary terrestrial Lunpola Basin , Xizang(Tibet J J]. Earth Science , 21(2):168~173(in Chinese with English abstract).
- Li Yalin , Wang Chengshan , Wu Xinhe , et al. 2005. Ma Runze. Discovery of Upper Jurassic marine oil shale in the Tuonamu area , northern Tibet , China[J]. Geological Bulletin of China , 24(8): 783~784(in Chinese with English abstract).
- Li Yalin , Wang Chengshan , Zhu Lidong , et al. 2010. Discovery of oil shale in the Nima basin , China and its significance J]. Geological Bulletin of China , 29(12): 1872 ~ 1874 (in Chinese with English abstract).
- Lin Jinhui , Yi Haisheng and Zou Yanrong. 2004. Biomarkers of marine and continental oil shale , the Zangbei Plateau J]. Geochimica , 33 (1):57~63 in Chinese with English abstract).
- Liu Zhaojun and Liu Rong. 2005. Oil shale resource evaluating system [J]. Earth Science Frotiers , 12(3): $315 \sim 323$ (in Chinese with English abstract).
- Murray R W, Buchholtz M R, Gerlach D C, et al. 1991. Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey group, Californian : assessing REE sources to fine-grained marine sediments[J]. Geochim Cosmochim Acta, 55:1875 ~ 1895.
- McLennan S M , Hemming S , McDaniel D K , et al. 1993. Geochemical Approaches to Sedimentation , Provenance and Tectonic J J. GSA Special Publication , 284 : 21~40.
- McLennan S M , Hemming S , Taylor S R , et al. 1995. Early Proterozoic Crustal Evolution : Geochemical and Nd-Ph Isotopic Evidence from Metasedimentary Rocks , Southwestern North America[J]

Geochimica et Cosmochimica Acta , 59 : 1 $153\!\sim\!1\,177.$

- Nesbitt H W M and Young G M. 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites [J]. Nature, 299:715~717.
- Shi Zhongsheng , Chen Kaiyun , Shi Jun , et al . 2003. Feasibility analysis of the application of the ratio of Strontium to Barium on the Identifying sedimentary envrionment J]. Fault block Oil and Gas Field , 10(2):12~16(in Chinese with English abstract).
- Taylor S R and McLennan S M. 1985. The Continental Crust : Its Composition and Evolutior [M]. Oxford : Blackwell , 12~312.
- Wang Chengshan , Yi Haisheng , Liu Chiyang , et al. 2004. Discovery of paleo-oil-reservoir in Qiangtang basin in Tibet and its geological significance J]. Oil & Gas Geology , 25(2): 139 ~ 143(in Chinese with English abstract).
- Wang Jian , Fu Xiugen , Du Andao , et al. 2007. Organic geochemistry and Re-Os dating of marine oil shale in Shenglihe area , northern Tibet , China J]. Marine Origin Petroleum Geology , 12(3):21-26 (in Chinese with English abstract).
- Wang Jian , Tan Fuwen , Li Yalin , et al. 2004. The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai-Xizang Plateau[M]. Beijing : Geological Publishing House , 283 ~ 298(in Chinese).
- Wang Zhengjiang , Wang Jian , Chen Wenxi , et al. 2007. Discovery of the Late Jurassic Shenglihe marine oil shale in the northern Qiangtang basin , Qinghai-Tibet Plateau[J]. Geological Bulletin of China , 26(6):764~76% in Chinese with English abstract).
- Wignall P B and Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinctior[J]. Science, 272:1155~1158.
- Xie Shangke , Wang Zhengjiang , Wang Jian , *et al* . 2010. The Middle and Late Ordovician trace elements geochemistry characters in Qijiang County , Chongqing City [J]. Sedimentary Geology and Tethyan Geology , $30(4):60 \sim 65($ in Chinese with English abstract).

附中文参考文献

- 艾华国,兰林英,朱宏权,等. 1998. 伦坡拉第三纪盆地的形成机理 和石油地质特征[J]. 石油学报,19(2):21~27.
- 常华进,储雪蕾,冯连君,等.2009.氧化还原敏感微量元素对古海 洋沉积环境的指示意义[J].地质论评,55:91~99.
- 邓宏文,钱 凯.1993. 沉积地球化学与环境分析[M]. 兰州:甘肃 科学技术出版社.
- 邓虎成,周 文,丘东洲. 2008. 西藏伦坡拉盆地油砂资源潜力分析[J]. 桂林工学院学报,28(2):167~173.

- 杜佰伟,谭富文,陈 明. 2004. 西藏伦坡拉盆地沉积特征分析及油 气地质分析[J]. 沉积与特提斯地质, 24(4):46~54.
- 付修根,王 剑,汪正江,等.2007a. 藏北羌塘盆地海相油页岩沉积 环境[J]] 新疆石油地质,28(5):529~533.
- 付修根,王 剑,汪正江,等.2007b. 藏北羌塘盆地晚侏罗世海相 油页岩生物标志物特征、沉积环境分析及意义[J]. 地球化学, 36(5):486~496.
- 顾雪祥,刘建明,Oskar Schulz,等. 2003. 江南造山带雪峰隆起区元 古宙浊积岩沉积构造背景的地球化学制约[J]. 地球化学,32 (5):406~426.
- 雷清亮, 付孝悦, 卢亚平. 1996. 伦坡拉第三纪陆相盆地油气地质特 征分析[J]. 地球科学, 21(2):168~173.
- 李亚林,王成善,伍新和,等.2005. 藏北托纳木地区发现上侏罗统 海相油页岩[J]. 地质通报,24(8):783~784.
- 李亚林,王成善,朱利东,等. 2010. 西藏尼玛盆地油页岩的发现及 其地质意义[J]. 地质通报,19(12):1872~1874.

- 林金辉,伊海生,邹艳荣.2004. 藏北高原海陆相油页岩生物标志化 合物对比研究 J]. 地球化学,33(1)57~63.
- 刘招君,刘 蓉.2005.中国油页岩特征及开发利用前景分析[J].地 学前缘,12(3)315~323.
- 史忠生,陈开远,史 军,等. 2003. 运用锶钡比判定沉积环境的可 行性分析[]].断块油气田,10(2):12~16.
- 王成善,伊海生,刘池阳,等. 2004. 西藏羌塘盆地古油藏发现及其
 意义[J] 石油与天然气地质,25(2):139~143.
- 王 剑, 付修根, 杜安道, 等. 2007. 羌塘盆地胜利河海相油页岩地 球化学特征及 Re-Os 定年 J]. 海相油气地质, 12(3): 21~26.
- 王 剑,谭富文,李亚林,等. 2004. 青藏高原重点沉积盆地油气资源潜力分析 M.1. 北京:地质出版社,283~298.
- 汪正江,王 剑,陈文西,等. 2007. 青藏高原北羌塘盆地胜利河上
 侏罗统海相油页岩的发现 []. 地质通报, 26(6):764~768.
- 谢尚克,汪正江,王 剑,等.2010. 綦江观音桥中上奥陶统微量元 素地球化学特征(1). 沉积与特提斯地质,30(4):60~65.