K-H₃OFe₃(SO₄)(OH)。 铁矾的 XRD 研究

许 涛¹, 邹来昌¹, 阮仁满², 廖占丕¹, 苏秀珠¹, 苏妤芸¹, 黄丽娟¹

(1. 紫金矿业 低品位难处理黄金资源综合利用国家重点实验室,福建上杭 364200;2. 中国科学院 过程工程研究所,北京 100190)

摘 要:根据 X 射线衍射(XRD)分析发现:A Fe₃(SO₄)(OH)(A = K⁺、H₃O⁺)系列铁钒的 XRD 数据十分相近,难 以用 XRD 区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的 003 和 107 面网间距 *d* 随 K⁺ 含 量增大而增大,且呈一元三次方程的关系;而 033 和 220 面网间距 *d* 随 K⁺含量增大而减小,呈一元二次方程的关 系。对该现象从铁矾晶体结构方面进行解释:K⁺、H₃O⁺离子位于较大空隙中,且沿着 *Z* 轴方向排列,当 K⁺、H₃O⁺ 离子之间相互替换时,会导致该铁矾晶体结构在 *Z* 轴方向有较明显的变化。

关键词:铁矾;XRD;晶体结构;鉴别

中图分类号:P578.4+97;P575.5

文献标识码 :A

文章编号:1000-6524(2013)06-0995-06

XRD study of K-H₃OFe₃(SO₄)₂(OH)₆ jarosite

 XU Tao¹, ZOU Lai-chang¹, RUAN Ren-man², LIAO Zhan-pi¹, SU Xiu-zhu¹, SU Yu-yun¹ and HUANG Li-juan¹
 (1. State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd., Shanghang 364200, China; 2. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)

Abstract: X-ray diffraction analysis shows that it is difficult to discriminate various kinds of A Fe₃(SO₄)₂(OH)₆ (A=K⁺, H₃O⁺) jarosites because their XRD data are very similar to each other. However, a series of jarosites could be discriminated by XRD and EDS method. The XRD result shows that 003 and 107 lattice spacing (d) of the jarosite increases with K⁺ ion content, whereas 033 and 220 lattice spacing (d) decreases with increasing K⁺ ion content. Their relationship is described by the regression equation. The explanation of this result from the crystal structure theory is that K⁺ and H₃O⁺ ions are located in the larger space and distributed along Z axis. Obvious change of jarosite crystal structure in the Z axis occurs with the mutual substitution between K⁺ and H₃O⁺ ions. **Key words:** jarosite; XRD; crystal structure; discrimination

铁矾是在酸性、富硫条件下通过硫化物氧化形 成的矿物,特别易在含黄铁矿矿石中形成。通常在 pH<3.0的酸性土壤中,有氧化亚铁硫杆菌起催化 作用时,铁矾更易形成(Frost *et al.*,2006)。铁矾的 通式为:A Fe₃(SO₄)(OH)。其中 A=H₃O⁺、Na⁺、 K⁺、Rb⁺、Ag⁺、NH⁴+、1/2 Pb²⁺、1/2 Hg²⁺等,是一 系列类质同晶矿物的统称。铁矾系列主要包括:黄 钾铁矾 KFe₃(SO₄)(OH)(potassium jarosite))钠铁 矾 NaFe₃(SO₄)(OH)(natrojarosite))草铁矾(H₃O) Fe₃(SO₄)(OH)(hydronium jarosite)) 铁矾为三方 晶系,常呈类似立方体的菱面体。在铁矾晶体结构 中,Fe³⁺位于略微扭曲的八面体中,SO₄构成四面 体。每个[SO₄]四面体中,有3个O₂和1个非桥连 的O₁。[Fe(OH)₄O₂]八面体中,4个OH在1个平

作者简介:许 涛(1981-),男,博士,研究方向:矿物材料,E-mail:xtao2190@163.com。

收稿日期:2013-03-22;修订日期:2013-05-04

基金项目:"973 '国家重点基础研究发展计划课题(2012CB724202)

网络出版时间:2003-07-19;网络出版地址:http://www.cnki.net/kcms/detail/11.1966.P.20130719.1043

面内,2个 O_2 在两个角点。OH 基团链接三节环和 六节环。[Fe(OH)₄ O_2]八面体构成的原子层垂直于 c轴。K⁺或者 H₃O⁺位于两个三节环(由 2 层 [Fe(OH)₄O₂]八面体层构成),被 12 个邻近原子(6 个 OH、6 个 S—O 原子)包围。K、Fe、SO₄ 沿着[100] 面排列(Gasharova *et al.*, 2005)。(图 1)。

铁钒在冶金行业有着重要的作用,通过形成铁 钒不仅能达到除铁、砷等有害元素的目的,而且可以 回收银、铅、铜等金属元素(徐采栋等, 1979; Ju et al., 2011),因此成为冶金专家研究的热点问题之 一。目前国内外对于铁钒的研究已有一些文献报 道。黎红兵等(2010)利用黄钾铁矾法有效处理了 铁、砷、锑等杂质含量高的锌精矿,从而有效回收了 其中的有价金属。研究结果表明,94.87%的铟、 97.8%的铁和绝大部分砷和锑进入黄钾铁矾中。王 长秋等(2005)对黄钾铁矾的形成条件及环境意义进 行了研究,研究表明,pH值、温度和硫酸铁介质浓度 是影响黄钾铁矾形成的主要因素。高 pH 值、温度和 浓度有利于黄钾铁矾的形成。在治理矿山和工业废 水时,通过黄钾铁矾可除 S、Fe、As、Cr、Hg 和 Pb 等 有毒有害元素。周桂英等(2008)针对紫金山次生硫 化铜矿石生物堆浸过程,系统研究了有菌与无菌条 件下铁矾形成过程的动力学,结果表明,细菌的参与 明显促进了铁矾的形成,有菌条件下产物为黄铵铁 矾,而无菌条件下主要生成 Fe(OH)3 胶体。虽然人 们对铁矾在生产实践中的应用研究较多,但是对铁 矾晶体结构的研究报道很少。Herbert(1997)通过比 较天然和合成的铁钒发现,在天然和合成的铁矾中, 碱性位置常出现 H₃O⁺、K⁺、Na⁺等离子相互替换, 铁矾晶体中c轴的变化与阳离子的大小有关,受晶 体结构的控制。对于不同成分的铁矾,其晶胞参数 a 值在一个标准范围内偏离,而 c 值的偏离比较大。 Drouet 和 Navrotsky(2003)在对合成的 K-H₃O 铁矾、

K-Na-H₃O铁矾进行鉴定时发现,它们的晶胞参数相 似,难以区分,通过化学成分测定最终取得的具体分 子式,并且指出 K-Na-H₃O铁矾的晶胞参数 *c* 随着 Na⁺ 增多出现变化,而 *a* 变化不大。

尽管人们对铁钒进行了深入的研究,但是在鉴别和区分铁钒时常容易忽视 K⁺和 H₃O⁺之间的替换问题,这种问题目前未见文献报道。本文对合成的铁钒进行 XRD 分析,探讨鉴别含 K⁺和 H₃O⁺系列铁钒的方法,并从晶体结构角度解释了含 K⁺和 H₃O⁺铁钒的 XRD 结果。

1 实验

1.1 样品的制备

取紫金山铜堆浸厂萃余液 450 mL,在萃余液中 加入不同量的 FeSO4•7 H₂O 和 Fe₂(SO4)₃ 配制成总 铁浓度为 64 g/L 的萃余液溶液,用 CaCO₃ 调节溶液 至 pH=1.2 后过滤除去 CaSO4 沉淀,静置于 60℃水 浴锅内进行陈化实验,陈化过程中每天检测溶液 pH、Eh 值,根据溶液质量用自来水补充蒸发的水量。 实验结束后过滤矿浆,滤饼用质量浓度 2%的硫酸溶 液洗涤 3 次,清水洗涤 3 次,过滤渣自然晾干,获得 草铁钒。

另外,通过 Fe₂(SO₄)₃、K₂SO₄ 和硫酸在 60℃ 水 浴锅内进行陈化实验,合成了黄钾铁钒。

1.2 测试条件

使用荷兰 PANalytical X' pert PRO 衍射仪进行

测试 靶材 Cu 测试电压 40 kV ,电流 40 mA 2θ 测试 范围:12°~52°,步长 0.007°,采用连续扫描方式。

样品的成分通过扫描电子显微镜(型号 Quanta650 飞利浦)上的能谱进行检测。

2 结果分析与讨论

实验制备所得的草铁钒和黄钾铁钒样品的 X 射 线衍射图谱见图 2a。从图 2 可知,紫金山铜堆浸厂 萃余液陈化的沉淀物中主要为草铁钒。在利用 HighScore Plus 软件进行检索时发现,含少量 K⁺的 草铁钒,如 K_{0.35}(H₃O), 65 Fe₃(SO₄),(OH),(ICSD 98-015-7713)数据也能与图 2a 中的草铁钒结果相匹 配。同样,在分析黄钾铁钒的 XRD 数据时也发现了 同样的问题:含 H_3O^+ 的黄钾铁钒,如 K_0 , $(H_3O)_{0.3}$ Fe₃(SO₄)(OH)(ICSD 98-015-7715)XRD 数据能与 图 2b中的黄钾铁钒数据相匹配。由此可见,单纯采 用 XRD 难以确定此类铁矾。为此 利用扫描电镜中 的能谱(EDS)测量此类铁钒中 Fe³⁺、K⁺含量,来推 算出具体的铁矾分子式。图 3 为草铁矾和黄钾铁矾 能谱数据。

从图 3 的结果计算可知 草铁钒中 Fe/K 摩尔比 值约为 10,黄钾铁钒中 Fe/K 摩尔比值约为 3.2,因 此可推算草铁钒分子式为 K_{0.3}(H₃O)_{0.7}Fe₃(SO₄)₂ (OH)₆,黄钾铁钒的分子式为 K_{0.9}(H₃O)_{0.1}Fe₃ (SO₄)₂(OH)₆。

图 2 草铁钒(a)和黄钾铁钒(b)的 X 射线衍射图谱

Fig. 2 XRD pattern of hydronium jarosite(a) and potassium jarosite(b)

Fig. 3 EDS data of synthesized jarosite

此外,在分析草铁矾和黄钾铁矾 XRD 数据时发现:铁钒的 003、107、033 和 220 面网间距 *d* 与 K⁺ 含量呈相关关系,如表 1 所示,K⁺含量不同,*d* 值或 增或减。为了进一步了解 003、107、033 和 220 面网 间距与 K⁺含量关系,我们选取了 ICSD 数据库中 5 种 不同 K⁺含量的铁钒数据进行比较结果见表 2 所示。

表 1 合成的草铁钒和黄钾铁钒部分 20 和 d 值 Table 1 Part of XRD data of synthesized jarosite

	草钱	失钒	黄钾铁钒			
hkl	20 /(°)	<i>d1</i> (nm)	20/(°)	<i>d1</i> (nm)		
003	15.4966	0.57182	15.4639	0.573 02		
107	39.4011	0.228 50	39.375 5	0.228 84		
033	45.6892	0.19841	45.7413	0.19820		
220	49.6780	0.18337	49.7836	0.18301		

从表 2 可发现 随着铁钒中 K⁺含量的增加 003 和 107 面网间距 *d* 值增大 033 和 220 面网间距 *d* 值减少。将 K⁺含量作为横坐标 ,不同面网间距 *d* 值作为纵坐标 ,可得到它们之间的变化趋势 ,如图 4 所示。

从图 4 可知 003 和 107 面网间距 d 值与 K⁺含 量呈一元三次方程的关系 033 和 220 面网间距 d 值与 K⁺含量呈一元二次方程的关系。而且 003 面 网间距 d 随 K⁺含量增大而增加最多,即从 0.5677 nm增至 0.572 6nm。其他面网间距变化不 大。对于这一结果可从铁矾晶体结构角度进行解 释:铁矾晶体结构中 K⁺和 H₃O⁺处于较大空隙中 (图 5 中圆虚线),且沿着三次对称轴排列 Z 轴方向)。 由于 K⁺半径 0.138 nm 大于 H₃O⁺半径 0.135 nm)当

表 2 ICSD 数据库中不同类型的铁钒数据比较

Table 2 ICSD data of various types of jarosit	te
---	----

	K _{0.} (H ₃ O) _{0.8} Fe ₃ (SO ₄)(OH) ₆		K _{0.35} (H ₃	O 🕽 0.65 Fe3	K _{0.51} (H	3O) _{0.49} Fe ₃	K _{0.6} (H ₃ O) _{0.4} Fe ₃		K _{0.} (H ₃ O) _{0.3} Fe ₃	
名称			(SO ₄)(OH)		$(SO_4) \times OH)_0$		(SO ₄) <u>(</u> OH) ₆		(SO ₄) <u>(</u> OH) ₆	
ICSD 卡片号	98-015-7712		98-015-7713		98-015-7714		98-015-7715		98-015-7716	
hkl	2θ /(°)	d/nm	20/(~)	d∕nm	201(°)	d/nm	2θ /(°)	d/nm	2θ /(°)	d/nm
003	15.596	0.56773	15.531	0.57010	15.500	0.57123	15.486	0.57173	15.462	0.57263
107	39.628	0.22725	39.483	0.22805	39.417	0.22842	39.392	0.22855	39.344	0.22883
033	45.647	0.198 58	45.658	0.198 54	45.686	0.19842	45.734	0.19823	45.783	0.19803
220	49.620	0.183 58	49.663	0.18343	49.714	0.18325	49.779	0.18303	49.852	0.18278

图 4 不同面网 d 值与 K^+ 含量之间的关系 Fig. 4 The relationship between d value and K^+ ion content

图 5 $(K,H_3O)Fe_3(SO_4)_2(OH)_6$ 铁矾的不同面网的原子排列 Fig. 5 Different crystal planes of $(K,H_3O)Fe_3(SO_4)_2(OH)_6$ jarosite

K⁺和 H₃O⁺之间出现替换时,会导致沿着 Z 轴方向 上的空隙发生畸变,K⁺含量高,则晶体沿 Z 轴方向 拉伸,且导致晶体在 X 和 Y 轴方向压缩,在面网上表 现为 001 面间距增大,且最为明显,其他面网也因而出 现变形,但是由于在 X 和 Y 轴方向原子排列比较紧 密,所以变化不明显。

3 结论

(1)通过 XRD 和能谱分析,鉴定出合成的草铁
矾和黄钾铁矾,并确定了它们的分子式分别为
K_{0.3}(H₃O)_{0.7}Fe₃(SO₄)₂(OH)₆和 K_{0.9}(H₃O)_{0.1}Fe₃
(SO₄)₂(OH)₆。

(2) XRD 分析结果发现: AFe₃(SO₄)₂(OH)₆(A =K⁺、H₃O⁺)系列铁钒的 003、107、033 和 220 面网 间距与 K⁺含量的呈一定的相关关系,即 003 和 107 面网间距随 K⁺含量增大而增大,呈一元三次方程的 关系:033 和 220 面网间距随 K⁺含量增大而减小, 呈一元二次方程的关系。这主要是因为,在(K⁺、 $H_{3}O^{+}$) Fe₃ (SO₄)₂ (OH)₆ 铁矾晶体结构中, K⁺、 $H_{3}O^{+}$ 位于较大空隙中,且沿着三次对称轴排列(*Z* 轴方向),当 K⁺、 $H_{3}O^{+}$ 之间相互替换时,会导致该铁 矾晶体结构在 *Z* 轴方向有较明显的增加,并引起 *X* 和 *Y* 轴方向发生畸变。

References

- Drouet C and Navrotsky Λ. 2003. Synthesis, characterization, and thermochemistry of K-Na-H₃O jarosites J]. Geochimica et Cosmochimica Acta, 67(11): 2 063~2 076.
- Frost R L, Wills R Λ, Kloprogge J T, et al. 2006. Thermal decomposition of hydronium jarosite (H₃O)Fe₃(SO₄)₂(OH)₆[J]. Journal of Thermal Analysis and Calorimetry, 83(1): 213~218.
- Gasharova B, Göttlicher J and Becker U. 2005. Dissolution at the surface of jarosite: an in situ AFM study [J]. Chemical Geology, 215: 499~516.
- Herbert R B. 1997. Properties of goethite and jarosite precipitated from acidic groundwater, Dalama Sweden [J]. Clays and Clay Minerals,

45(2):261~273.

- Ju Shaohua , Zhang Yifei , Zhang Yi , et al. 2011. Clean hydrometallurgical route to recover zinc , silver , lead , copper , cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy[J]. Journal of Hazardous Materials , 192:554~558.
- Li Hongbing , Zhou Zhihui , Chen Zhifei , *et al*. 2010. Study on the Jarosite Process in Zinc Hydrometrallurgy[J]. Hunan Nonferrous Metals , 26(4):27~29(in Chinese).
- Wang Changqiu , Ma Shengfeng , Lu Anhuai , *et al* . 2005. The formation conditions of jarosite and its environmental significance J]. Acta Petrologica et Mineralogica , 24(6): $607 \sim 611$ (in Chinese with English abstract).
- Xu Caidong , Lin Rong and Wang Dacheng. 1997. Physical Chemistry of Zinc Metallurgy[M]. Shanghai : Shanghai Science and Technology Press , 264~277(in Chinese).

Zhou Guiying, Ruan Renman, Ye Yaping, *et al.* 2008. Comparative study on kinetics of jarosite formation in presence of bacteria and aseptic conditior[J]. Nonferrous Metals, 60(4):59-62(in Chinese).

附中文参考文献

- 黎红兵,周志辉,陈志飞,等. 2010. 黄钾铁矾法炼锌的沉矾过程研
 第1].湖南有色金属,20(4):27~29.
- 王长秋,马生凤,鲁安怀,等. 2005. 黄钾铁矾的形成条件研究及其环境意义[J]. 岩石矿物学杂志, 24(6):607~611.
- 徐采栋,林 蓉,汪大成,著.1979. 锌冶金物理化学[M].上海:上 海科学技术出版社 264~277.
- 周桂英,阮仁满,叶亚平,等. 2008. 有菌与无菌条件下铁矾形成动 力学的对比[J]. 有色金属,60(4):59~62.

		1 5		- 11 /	3				
序号	刊名	影响 因子	总被引 频次	他引率	序号	刊名	影响 因子	总被引 频次	他引率
1	地质学报	1.873	4013	0.93	18	地球科学进展	0.927	2807	0.95
2	岩石学报	1.817	5876	0.73	19	现代地质	0.903	1567	0.83
3	矿床地质	1.779	2218	0.88	20	岩石矿物学杂志	0.882	1050	0.93
4	地球学报	1.600	1589	0.80	21	吉林大学学报地球科学版	0.795	1724	0.82
5	大地构造与成矿学	1.333	955	0.83	22	地质与勘探	0.764	1355	0.88
6	地质论评	1.321	2287	0.93	23	西北地质	0.736	673	0.71
7	中国科学地球科学	1.274	3471	0.95	24	地层学杂志	0.655	657	0.78
8	地质通报	1.268	2654	0.89	25	矿物岩石	0.638	825	0.90
9	古地理学报	1.080	932	0.81	26	地质科学	0.626	1409	0.88
10	沉积学报	1.051	2563	0.91	27	地质科技情报	0.605	1078	0.87
11	地球化学	1.035	1678	0.95	28	地球与环境	0.500	644	0.91
12	岩矿测试	1.019	1210	0.74	29	矿物岩石地球化学通报	0.492	616	0.95
13	地学前缘	1.014	3155	0.94	30	新疆地质	0.484	794	0.87
14	高校地质学报	0.967	1261	0.94	31	矿物学报	0.419	879	0.91
15	地质力学学报	0.960	417	0.89	32	沉积与特提斯地质	0.343	491	0.93
16	地球科学	0.947	2057	0.91	33	地质找矿论丛	0.287	369	0.94
17	中国地质	0.928	1721	0.82	34	矿产勘查	0.263	340	0.92

2012年度部分地质学类期刊主要计量指标一览表

本表格数据引自《2013年版中国科技期刊引证报告(核心版)》(中国科学技术信息研究所编)。