南天山满大勒克蛇绿岩铬铁矿矿物学 特征及其意义

张炜斌 张东阳 张招崇 黄 河 赵 莉

(中国地质大学 地质过程与矿产资源国家重点实验室,北京 100083)

摘 要:满大勒克蛇绿岩属于南天山晚古生代蛇绿岩带,主要由蛇纹石化橄榄岩、玄武岩和含放射虫硅质岩组成。 其中蛇纹岩富含铬铁矿,并具有豆荚状特征。显微镜观察和电子探针分析表明,铬铁矿具有明显的环带结构,从核 部到边部呈现出由铬尖晶石到铬铁矿到磁铁矿的变化特征,元素组成上具有由富 Al 和 Cr、贫 Fe 到贫 Al 和 Cr、富 Fe 的变化趋势。利用铬铁矿(铬尖晶石)核部矿物的化学成分,得出铬尖晶石的结晶温度为 1 359~1 394℃,平均 1 379℃ 压力为 2.76~3.00 GPa,平均 2.87 GPa;相对于 FMQ 缓冲剂的地幔氧逸度为 FMQ-1.50~FMQ-2.92 log 单位,平均值为 FMQ-2.14 log 单位,地幔熔融程度 F 为 16.7%~18.0%。结合已有研究成果,推测满大勒克蛇 绿岩的基底橄榄岩单元源区为石榴石二辉橄榄岩,形成于亏损的软流圈地幔,对应的大地构造位置为弧前盆地。研 究区铬尖晶石的环带特征显示其经历了温度由高到低、氧逸度由低到高的演变,反映了满大勒克蛇绿岩套的橄榄岩 单元经历了高温高压的地幔环境(低氧逸度),之后随构造变动被推覆到地壳、定位之后又经历了区域变质作用的演 化过程(高氧逸度)。

关键词:铬尖晶石 成分分带 物理化学条件 构造背景 中图分类号:P578.4⁺6;P588.12⁺5 文献标识码:A

文章编号:1000-6524(2011)02-0243-16

Mineralogy of chromites in Mandaleke ophiolite of South Tianshan Mountains and its geological implications

ZHANG Wei-bin, ZHANG Dong-yang, ZHANG Zhao-chong, HUANG He and ZHAO Li

(State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083,

China)

Abstract: The Mandaleke ophiolite belongs to the late Paleozoic ophiolite belt in South Tianshan Mountains and is composed of serpentinized peridotites, basalts and radiolarian cherts. The chromite or Cr-spinel occurs in the serpentinized peridotites as a ubiquitous accessory mineral, some of which has the podiform texture. Petrographic observation and electron microprobe analysis indicate that the Cr-spinel grains display obvious composition zoning, suggesting the path of such thermal events as crystallization, upwelling and alteration. The core of the Cr-spinel crystal represents the provenance where the mineral crystallized. The authors thus chose cores of the Cr-spinel to trace the nature of the mantle and the whole crystals to deduce the thermal events that the host rocks have experienced. On the basis of olivine-spinel geothermometry, the crystallized temperature of the anhedral core is estimated to be from 1 359°C to 1 394°C, 1 379°C on average. Similarly, according to the Cr-spinel geobarometer, the mantle pressure is estimated to be from 2.76 GPa to 3.00 GPa, 2.87 GPa on average, while the

基金项目:国家科技支撑项目(2007BAB25B05);111 计划(B07011);教育部创新团队计划资助项目

收稿日期:2010-06-17;修订日期:2010-11-22

作者简介:张炜斌(1987 -),男,学士,资源勘查工程(固体矿产)专业,E-mail:fossilchina@gmail.com;通讯作者:张招崇,教授,E-mail:zczhang@cugb.edu.cn。

oxygen fugacity relative to FMQ buffer is FMQ- $1.50 \sim$ FMQ-2.92 log units, FMQ-2.14 log units on average. Furthermore, the degree of partial melting of the mantle is estimated to be from 16.7% to 18.0%, 17.3% on average, in the light of its relationship with Cr^{\ddagger} . These parameters provide some clues of the physic-ochemical conditions: these peridotites were derived from garnet lherzolites located in the asthenosphere of the upper mantle, and the incompatible element-depleted mantle might have resulted from previous partial melting. The tectono-discrimination diagrams imply that the Mandaleke ophiolite was formed in a fore-arc setting. The compositional zoning suggests that the peridotites have undergone a thermal path of decreasing temperature and increasing oxygen fugacity. It can be inferred that the mantle peridotites experienced the process from a high temperature and high pressure mantle (lower oxygen fugacity) stage to a thrusting slice stage to reach the crustal surface, where they were subjected to regional metamorphism (higher oxygen fugacity). **Key words:** Cr-spinel; composition zoning; physicochemical conditions; tectonic setting

蛇绿岩作为板块缝合线的标志 ,形成环境主要 有洋中脊、大洋岛弧、弧前、弧后等环境,但如何识别 具有一定的难度。对于南天山地区的蛇绿岩形成环 境尚存在不同的认识,如有限洋盆环境(高俊等, 1995 ;龙灵利等,2006)、弧后盆地环境(董云鹏等, 2005), 消减带环境(马中平等, 2006)等。 蛇绿岩中 的地幔橄榄岩单元来自于地幔 ,是探究地幔的重要 研究对象,对于判别蛇绿岩的形成环境具有重要的 意义。 铬铁矿(铬尖晶石)以副矿物的形式存在于寄 主岩石地幔橄榄岩中,其元素组成反映了矿物结晶 时所处地幔的状态(Dick and Bullen, 1984),如地幔 的物质组成、赋存环境、物理化学状态以及地幔熔融 程度 这些信息为探讨构造环境提供了重要的约束 条件。虽然目前对南天山的蛇绿岩研究较多,但主 要集中在年代学、岩石地球化学方面(如汤耀庆等, 1995 高俊等,1995;刘本培等,1996;张旗等,2001; 龙灵利等 2006) 而铬尖晶石的研究则尚未涉及 这 在一定程度上限制了对深部地幔状态和构造环境及 其演化的认识。本文试图通过对南天山满大勒克蛇 绿岩中铬尖晶石的产出特征及其成分特征的研究, 阐明其形成时的物理化学条件、地幔熔融程度 揭示 其蕴含的成因信息 ,进而探讨其相应的构造环境及

其定位于地壳所经受变质作用的过程。

1 区域蛇绿岩地质概况

南天山蛇绿岩带位于受准噶尔板块、伊宁中天山板块、塔里木板块共同作用的南天山微板块中,是 塔里木板块向北部伊宁中天山板块及准噶尔板块俯 冲、拼接的标志(肖序常等,1992)。南天山蛇绿岩带 一般分为两带(图1)即中天山南缘早古生代蛇绿岩带 (北带)和南天山晚古生代蛇绿岩带(南带),分别 代表不同的大地构造环境(汤耀庆等,1995)。北带 形成于寒武纪到志留纪(表1),代表了伊犁中天山板 块和南天山微板块间的洋盆或弧后洋盆;南带形成 于晚泥盆世—早石炭世(表1),代表了D2—C1时期 存在于南天山微板块和塔里木板块之间的陆间慢速 扩张的小洋盆,是塔里木板块和伊犁中天山板块的 最末期缝合线位置(汤耀庆等,1995)。

2 满大勒克蛇绿岩地质特征

满大勒克蛇绿岩位于新疆维吾尔自治区拜城县 黑英山乡东北 地理坐标 42°20′28″N 82°51′53″E 属

表 1 南天山蛇绿岩时间分布统计表

		Table 1A	ges of southern T	ianshan ophiolites	5		
	蛇绿岩名称	测试岩性	测试方法	年代数据/Ma	地质年代	数据来源	
	长阿乌子	辉长岩	辉石 Ar-Ar	439 ± 26.7	志留纪	郝杰等(1993)	
北带	达鲁巴依	辉长岩	锆石 Pb-Pb	590 - 600	寒武纪	杨海波等(2005)	
	榆树沟⊢硫磺山	麻粒岩	锆石 U-Pb	440	志留纪	王润三等(1998)	
	黑英山	斜长角闪岩	角闪石 Ar-Ar	420	泥盆纪	刘本培等(1996)	
南带	库勒湖	玄武岩	锆石 U-Pb	425 ± 8	泥盆纪	龙灵利等(2006)	
	欧西达坂	角闪辉长岩	斜长石 Ar-Ar	333	早石炭世	何国琦等(1994)	
	色日克牙依拉克	花岗闪长岩	锆石 U-Pb	387 ± 8	泥盆纪	朱志新等(2008)	

Fig. 1 Distribution of ophiolites in Western Tianshan Mountains(modified after Zhang Qi *et al.*, 2001) 1—古生代地层; 2—前寒武纪基底; 3—古生代花岗岩和岛弧火山岩; 4—高压变质岩; 5—蛇绿岩; 6—逆冲断层; 7—国境线; 括号中数字 代表蛇绿岩出齹地点:(1)—干沟;(2)—米食沟;(3)—乌斯特沟;(4)—芦苇沟;(5)—巴音沟;(6)—长阿吾子;(7)—古洛沟;(8)—榆树 沟;(9)—铜花山;(10)—硫磺山;(11)—米斯布拉克;(12)—库勒湖;(13)—独库公路965 m;(14)—色日克牙依布拉克;(15)—科克铁 克达坂;(16)—黑英山;(17)—满大勒克

1—Paleozoic strata ; 2—Precambrian crystalline basement ; 3—granite and island-arc volcanic rock ; 4—high pressure metamorphic rock ; 5—ophiolite ; 6—thrust fault ; 7—national boundaries ; Ophiolite outcrops in western Tianshan area : (1)—Gangou ; (2)—Mishigou ; (3)—Wusitegou ; (4)—Luweigou ; (5)—Bayingou ; (6)—Changawuzi ; (7)—Guluogou ; (8)—Yushugou ; (9)—Tonghuashan ; (10)—Liuhuangshan ; (11)—Misibulake ; (12)—Kulehu ; (13)—965 m of Duku Road ; (14)—Serikeyayibulake ; (15)—Keketiekedaban ; (16)—Heiyingshan ; (17)—Mandaleke

于南天山晚古生代蛇绿岩带(南带)。该蛇绿岩与南 北两侧地层以断层接触(图2、图3),北部为下泥盆 统阿尔腾柯斯组地层,南部为钠长石英片岩,亦属于 下泥盆统阿尔腾柯斯组。蛇绿岩残片呈透镜状产 出,岩石组合主要为一套超基性岩、基性火山岩及红 色含放射虫硅质岩,缺失辉长岩类、浅色岩类及岩 墙。超基性岩主要为蛇纹石化的方辉橄榄岩及少量 蛇纹石化的二辉橄榄岩。基性火山岩为灰绿色,枕状 构造不发育,岩性为玻基拉斑玄武岩。红色硅质岩中 含大量 D,—C1 的放射虫化石(汤耀庆等,1995)。

铬尖晶石的寄主岩石为蚀变的方辉橄榄岩。方 辉橄榄岩为黑褐色,呈块状构造产出(图 4a、4b),具 有轻微的糜棱结构,大部分蛇纹石化,主要矿物为蛇 纹石,含量约85%,橄榄石含量约7%,辉石含量约 5%。副矿物为磁铁矿,含量约2%,铬尖晶石含量约 1%。蛇纹石具有鳞片变晶结构、网脉状变晶结构, 部分有波状消光现象,少量颗粒保留了橄榄石和辉 石的假像。残余的橄榄石多呈粒状,粒度0.5~2 mm,可见扭折带及波状消光现象。辉石残晶多为半 自形,亦具有波状消光现象,依据其最高干涉色为1 级黄、紫,推测大部分为斜方辉石。橄榄石和斜方辉 石的颗粒间隙均由网脉状蛇纹石填充。磁铁矿粒径 0.02~3 mm不等,呈他形(多为近似椭圆状)散布 于蛇纹石矿物间。铬尖晶石 粒径0.02~2 mm,他形

图 2 满大勒克蛇绿岩区域地质图 据 1:20 万黑英山地区区域地质报告改编 🗩

Fig. 2 Regional geological map of Mandaleke ophiolite (modified after 1:200 000 Geological Map of Heivingshan Area)

图 3 新疆拜城满大勒克蛇绿岩地质剖面图(据朱志新 2007)

Fig. 3 Geological section of Mandaleke ophiolite, Baicheng County, Xinjiang(modified after Zhu Zhixin, 2007)
1—第四系沉积物;2—辉石橄榄岩;3—碎裂橄榄岩;4—蛇纹岩;5—黑云母角岩;6—黑云母斜长片麻岩;7—角闪片岩;8—石英闪长岩;
9—阳起石片岩;10—剖面方向;11—断层

1—Quaternary sediments ; 2—peridotite ; 3—detrital peridotite ; 4—serpentinite ; 5—biotite hornfels ; 6—biotite plagioclase gneiss ; 7—hornblende schist ; 8—quartz diorite ; 9—section direction ; 10—fault

(多为近似椭圆状),正交偏光镜下全消光(图4c),在 单偏光镜下颗粒中心部位显示暗红色(图4d),边缘 黑色,说明铬尖晶石发生了环带状蚀变,部分颗粒具 有网状裂隙(图4d),裂隙由不透明矿物充填,推测与 颗粒边缘为同种矿物。背散射图显示,铬尖晶石发 育明显的豆荚状结构(图4e,4f)。

3 铬铁矿的矿物化学

3.1 样品和分析方法

本文测试对象为铬尖晶石类矿物(铬尖晶石、铬 铁矿、磁铁矿)。在背散射图像中,大部分铬尖晶石

图 4 野外及显微照片

Fig. 4 Photographs of outcrops and microphotographs of Cr-spinels a一变质橄榄岩野外露头; b一变质橄榄岩与围岩呈构造接触; c一铬尖晶石(正交偏光); d一铬尖晶石(单偏光); e一铬尖晶石(共结点, 具有豆荚状结构,背散射); f一铬尖晶石(经受了蚀变作用,豆荚状结构明显,背散射)

a—outcrops of metaperidotites; b—structural contact between peridotites and wall rocks; c—Cr-spinel (crossed nicols); d—Cr-spinel (plainlight); e—Cr-spinels (eutectic point, podiform texture in back-scattered electron image); f— Cr-spinel (podiform structure in back-scattered electron image)

表现出非常明显的环带状结构(图 4e、4f),部分颗粒 具有典型的豆荚状结构,核部为暗灰色,过渡带为灰 白色,而边部则显示亮灰色(图 4e)。这种现象是元 素组成不同造成的,故选取分带明显的矿物颗粒在 不同的圈层,如核、幔、边部,进行电子探针分析。

电子探针分析在中国地质大学(北京)地学实验 中心电子探针实验室完成,测试仪器为 EPMA 1600 实验条件是加速电压 15 kV、电流 1×10⁻⁸A、 束斑 1 µm、ZAF 修正法。样品使用电荷平衡法,以 4 个氧原子为基础,计算求得全部样品的阳离子数。 分析结果见表 2。

由于 Fe 价态涉及到下文的温度、压力、氧逸度 等物理化学条件的计算,因而需要对电子探针分析 数据 FeO 换算成 FeO 和 Fe₂O₃ 然后进行分析。铬尖 晶石中 Fe²⁺和 Fe³⁺的相对准确含量通常选用穆斯 堡尔谱进行测定,而本文使用电子探针数据利用化 学式(AB_2O_4)和电价平衡计算出 Fe^{2+} 和 Fe^{3+} 的含 量,所以有必要对两种方法的结果进行对比分析。 为此 本文选用了 Wood 和 Virgd 1989)提出的适用 于尖晶石矿物的穆斯堡尔谱二次校准法、对电子探 针数据计算出的 Fe 离子数进行准确性评价。》该二 次校准法指出,同一测试系统中,具有经验公式: $(Fe^{3+}/\Sigma Fe)_{mos} - (Fe^{3+}/\Sigma Fe)_{probe} = A + BI Al/(Al)$ +Cr)] 其中(Fe³⁺/∑Fe)_{Moss}表示穆斯堡尔谱法测 出的比值,即真实值(Fe³⁺/∑Fe)mbe表示电子探针 计算得到的比值; A和 B均为常数; Al/(Al+Cr)为 原子数比值。选取作者推荐的($Fe^{3+}/\Sigma Fe$)_{Miss}数值 0.10 和 0.05 代入本文中的两个相近数据 求得 A= -0.031 ,B=0.053 ,即得(Fe³⁺/∑Fe)_{Möss}-(Fe³⁺/ ∑Fe)_{probe} = 0.053[Al/(Al + Cr)] − 0.031。代入数 值 求得(Fe³⁺/∑Fe)_{Möss},结果(表3)显示电子探针 计算数据的误差为 \pm 0.014, 说明电子探针数据 Fe 计算结果接近真实值,所以采用电价平衡计算方法 得出的结果是符合实际的。

3.2 铬尖晶石类矿物化学

电子探针分析结果表明,铬尖晶石主要由 Cr_2O_3 、 Al_2O_3 、 Fe_2O_3 、FeO、MgO 组成,并含有少量的 SiO_2 、 TiO_2 、MnO 和 CaQ(表 2)。铬尖晶石由核部到 边部元素组成变化情况见图 5。总体而言,由核部到 边部 Al_2O_3 、 Cr_2O_3 、MgO 含量呈现逐渐降低的趋势, 而 FeO、 Fe_2O_3 含量则逐渐升高;边部的 $Cr^{\#}[100$ $Cr/(Cr + Fe^{3+})]与过渡带近似,但较核部大。<math>Mg^{\#}$ [100 Mg/(Mg+Fe²⁺)从边部到核部逐渐升高。铬 尖晶石表现出了由贫铁到贫铝、再到富铁的演化过 程。

将不同部位的铬尖晶石投入巴甫洛夫铬尖晶石 分类图(图6)中,核部为富铝铬铁矿,过渡带为高铁 铬铁矿,边部同过渡带的区分不明显,也属于高铁铬 铁矿,不过明显向 Fe₂O₃的方向变化。同时,有部分 颗粒边缘部分即最靠近 Fe₂O₃端员的部分可划分为 磁铁矿,表明铬尖晶石发生了明显的次生蚀变作用。

4 讨论

4.1 物理化学条件

通常认为橄榄岩是上地幔成因,容易达到热力 学平衡(Stixrude and Bertilloni, 2005),所以岩石中 蕴含的物理化学参数的信息可以代表上地幔的状态。

作为橄榄岩中的特征副矿物,铬尖晶石的元素 组成对结晶过程中的物理化学条件十分敏感,其元 素组成记录了当时的环境条件,而且较其他地幔或 岩浆成因矿物更耐交代、耐腐蚀。正因为如此,铬尖 晶石反映上地幔在当时的物理化学条件,对探究岩 石的成因信息及当时的地幔状态有很显著的指示作 用(Dick and Bullen, 1984)。

由图 5 可以看出,各矿物颗粒核部的主要成分 并未发生明显的变化,表明核部处于平衡状态 (Barnes,2000),故选取远离边部的点位进行物理化 学参数的计算。

4.1.1 温度

橄榄岩中共生的尖晶石和橄榄石中 Mg^{2+} 和 Fe²⁺的分异程度可以作为地质温度计(Irvine, 1965;Fabries,1979;Reodder *et al*.,1979)。该地 质温度计最初由 Irvine 于 1965年提出,由实验得出 共生的尖晶石和橄榄石间具有 Mg-Fe 复合分配系数 K_D , $K_D = (X \stackrel{olv}{M_8} \cdot X \stackrel{op}{Fe}) (X \stackrel{olv}{Fe} \cdot X \stackrel{op}{M_8}), 受结晶时的$ $温度控制,其中 <math>X_i^a$ 表示在 a 矿物相中的 i 元素的摩 尔分数,它主要是随着温度而变化。此外,尖晶石中 三价元素的摩尔分数 $Y \stackrel{op}{H} = i / (Cr + Al + Fe^{3+}), 也是$ 随温度而显著变化的物理量,特别是其中的 Y 2%。

本文选用了 Fabries(1979)的方法计算铬尖晶石 核部的结晶温度,公式为 $T = (4\ 250\ Y \overset{\text{op}}{\underset{\text{C}}{\text{C}}} + 1\ 343)$ $/(\ln K \overset{0}{\underset{\text{C}}{\text{C}}} + 1.825\ Y \overset{\text{op}}{\underset{\text{C}}{\text{C}}} + 0.571)$,其中 $\ln K \overset{0}{\underset{\text{D}}{\text{D}}} = 0.34 + 1.06(Y \overset{\text{op}}{\underset{\text{C}}{\text{C}}})$ 适用条件 $T = 1\ 500\ \text{K}$ 左右。公式中,T

						表2 段	3头晶石类	矿物电子	探针分析线	话果						$w_{ m B}/\%$
					ľ	Table 2 E	lectron mi	croprobe a	malyses of	Cr-spinel						
样品号		ЗХН	S-5-12			HYS-5-10	Ŋ	77	3XH	3-2-2-9				HYS-2-2-	8	
分析点位	뼬	核-3	核-2	核-1*	核-3	核-2	核-1*	ţ,	廮	核-3*	核-2	边	廮	核-3	核-2	核-1*
矿物种类	铬铁矿	铬尖晶石	铬尖晶石	、 铬尖晶石	铬尖晶石	铬尖晶石	铬尖晶石	磁铁矿	铬铁矿	尖晶石	尖晶石	磁铁矿	铬铁矿	铬尖晶石	铬尖晶石	铬尖晶石
SiO ₂	2.10	0.43	0.42	0.41	0.27	0.42	0.42	1.22	3.55	0.74	0.49	0.29	3.53	0.27	0.31	0.48
TiO_2	0.55	0.27	0.00	0.00	0.41	0.21	0.25	0.00	$^{}_{\Lambda}$ 0.22	0.04	0.00	0.00	0.46	0.00	0.00	0.00
M_2O_3	5.04	19.66	20.99	20.50	20.91	18.01	20.32	0.16	0.77	27.41	28.86	0.13	1.17	24.60	25.11	24.12
$\rm Fe_2O_3$	22.19	2.33	2.48	2.08	0.74	0.92	1.91	66.64	43.97	1.69	0.00	67.80	36.35	0.83	0.65	0.86
FeO	26.98	19.78	18.25	19.12	19.14	20.26	18.35	31.63	28.57	21.57	20.36	31.50	27.69	19.86	19.09	19.43
MnO	4.85	0.89	0.48	0.53	0.72	0.84	0.87	0.34	4.10	0.74	0.71	0.38	4.96	0.95	0.63	0.64
MgO	2.92	9.91	11.13	10.30	10.53	9.25	10.98	1.10	3,11	9.75	10.50	0.25	3.14	10.04	10.71	10.64
CaO	0.00	0.00	0.00	0.18	0.00	0.20	0.00	0.00	0.00	A 0.13	0.03	0.00	0.13	0.08	0.17	0.10
Cr_2O_3	37.13	46.40	45.82	46.30	46.95	49.44	46.91	1.96	19.16	37.98	38.81	2.21	25.44	43.30	42.97	43.67
Total	101.76	99.67	99.57	99.42	99.62	99.55	100.01	103.05	103.46	100.05	99.76	102.56	102.87	99.92	99.65	99.95
50 S	0.07	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.13	0.02	0.02	0.01	0.13	0.01	0.01	0.02
Ti	0.02	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Ν	0.21	0.74	0.78	0.77	0.78	0.68	0.75	0.01	0.03	0.99	1.04	0.01	0.05	0.90	0.92	0.88
Fe^{3+}	0.59	0.06	0.06	0.05	0.02	0.02	0.05	1.85	1.17	0.04	0.00	1.91	0.97	0.02	0.02	0.02
Fe^{2+}	0.79	0.53	0.48	0.51	0.50	0.55	0.48	0.97	0.85	0.55	0.52	0.99	0.82	0.52	0.49	0.50
Mn	0.14	0.02	0.01	0.01	0.02	0.02	0.02	0.01	0.12	0.02	0.02	0.01	0.15	0.03	0.02	0.02
Mg	0.15	0.47	0.52	0.49	0.50	0.44	0.51	0.06	0.16	0.45	0.48	0.01	0.17	0.47	0.49	0.49
C_{a}	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00
$\mathbf{C}_{\mathbf{r}}$	1.03	1.17	1.14	1.16	1.17	1.26	1.17	0.06	0.54	0.92	0.94	0.07	0.71	1.06	1.05	1.07
Total	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
$\mathrm{Cr}^{\#}$	83.17	61.29	59.42	60.24	60.10	64.81	60.76	89.15	94.35	48.17	47.43	91.94	93.58	54.15	53.45	54.85
Mg^{\sharp}	16.17	47.17	52.09	48.99	49.51	44.87	51.61	5.84	16.25	44.62	47.90	1.40	16.82	47.40	50.00	49.39

2
续表

250

	1	N		HYS-3-3-3					HVS-3-3-1		
 *	亥-1 *		力模	核-3	核-2	核-1*	边	长	核-3	核-2	核-1*
い。晶石	尖晶石	藏	失矿 铬铁矿	铬尖晶石	铬尖晶石	铬尖晶石	磁铁矿	铬铁矿	铬尖晶石	铬尖晶石	铬尖晶石
.32).32	0.	35 1.06	0.38	0.44	0.11	0.21	3.48	0.44	0.17	0.31
00	00.(0.	00 0.00	0.00	0.00	0.44	0.00	0.00	0.17	0.18	0.25
.30	5.30	0.	00 2.75	26.29	27.07	26.80	0.21	1.51	27.82	28.33	26.48
.03	1.03	64	.62 39.70	2.12	1.60	1.25	67.94	34.76	0.44	1.20	1.50
17.	9.77	31	.21 26.52	19.48	19.50	20.03	31.48	27.68	19.69	19.27	19.13
30).30	0.	31 5.19	1,10	0.52	0.57	0.25	4.64	0.54	0.46	0.94
. 78	0.78	0.	32 1.53	10,41	11009	10.67	0.27	3.08	11.23	11.20	10.87
.06).06	0.	07 0.17	0.21	0.06	0.00	0.09	0.24	0.00	0.00	0.00
.96	2.96	4	81 26.21	40.26	40.25	40.47	2.36	27.82	40.40	39.07	40.05
).51	0.51	10]	.70 103.14	100.24	100.53	100.35	102.81	103.20	100.73	99.88	99.52
.01	.01	0.	01 0.04	0.01	10.01	0.00	0.01	0.12	0.01	0.01	0.01
00).00	0.	00 0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01
92). 92	0.	00 0.12	0.95	0.97	0.97	0.01	0.06	0.99	1.02	0.96
02). 02	Ι.	83 1.07	0.05	0.04	0.03	1.91	0.92	0.01	0.03	0.04
51).51	0.	98 0.79	0.50	0.50	0.51	0.98	0.81	0.50	0.49	0.49
.01). 01	0.	01 0.16	0.03	0.01	0.02	0.01	0.14	0.01	0.01	0.03
49).49	0.	02 0.08	0.48	0.50	0.49	0.02	0.16	0.51	0.51	0.50
00).00	0.	00 0.01	0.01	0.00	00.0	0.00	0.01	0.00	0.00	0.00
.04	1.04	0.	14 0.74	0.98	0.97	0.98	0.07	0.77	0.97	0.94	0.97
00	3.00	ю.	00 3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
.25	3.25	10(.00 86.48	50.67	49.94	50.32	88.29	92.52	49.35	48.06	50.36
.30	9.30		80 9.32	48.79	50.34	48.70	1.51	16.55	50.41	50.89	50.33

第2期

表 3 穆斯堡尔谱二次校准法计算结果

样品号		HY	′S-5-12			HYS-5-10		HYS-2-2-9
分析点位	幔	核-3	核 -2	核 -1	核-3	核-2	核-1	边
Al/(Al+Cr)	0.168	0.387	0.406	0.398	0.399	0.352	0.392	0.108
(Fe ³⁺ /∑Fe) _{probe}	0.425	0.096	0.109	0.089	0.034	0.039	0.086	0.655
(Fe ³⁺ /∑Fe) _{Möss}	0.403	0.085	0.100	0.079	0.024	0.027	0.075	0.629
样品号		HYS-2-2-9				HYS-2-2-8		
分析点位	幔	核 -2	核-1	边	幔	核-3	核 -2	核-1
Al/(Al+Cr)	0.057	0.518	0.526	0.081	0.064	0.459	0.466	0.452
(Fe ³⁺ /∑Fe) _{probe}	0.581	0.066	0.000	0.659	0.542	0.036	0.030	0.038
(Fe ³⁺ /∑Fe) _{Möss}	0.553	0.062	-0.003	0.633	0.514	0.029	0.024	0.031
样品号			HYS-3-3-4				HYS-3-3-3	
分析点位	边	幔	核-3	核 -2	核-1	边	幔	核-3
Al/(Al + Cr)	0.059	0.092	0.477	0.463	0.467	0.000	0.135	0.493
(Fe ³⁺ /∑Fe)probe	0.661	0.497	0.019	0.076	0.045	0.651	0.574	0.089
(Fe ³⁺ /∑Fe) _{Möss}	0.633	0.471	0.013	0.070	0.038	0.620	0.550	0.084
样品号	HYS	-3-3-3			HYS-3	-3-1		
分析点位	核 -2	核-1	边	幔	核-	3) ()	核 -2	核-1
Al/(Al + Cr)	0.501	0.497	0.117	0.075	0.5	07	0.519	0.496
(Fe ³⁺ /∑Fe) _{probe}	0.069	0.053	0.660	0.531	0.0	20	0.053	0.066
(Fe ³⁺ /∑Fe) _{Möss}	0.064	0.049	0.635	0.503	0.0	16	0.050	0.061

为绝对温度, $Y_{C}^{a} = Cr/(Cr + Al + Fe^{3+})$ 。该公式因为 有了 lnK_{D}^{0} 与 Y_{C}^{a} 之间的线性关系,使温度仅与铬尖 晶石中 Cr 的摩尔分数(三价元素)有关,从而使温度估 算更为简便。本文选取 7 个铬尖晶石样品的核部数据 进行计算,结果见表 4(绝对温度已转换为摄氏温度)。 结果表明 温度为 1 359~1 394°C,平均值为 1 379°C。 4.1.2 压力

O'Neil(1981)在对尖晶石二辉橄榄岩和石榴石 二辉橄榄岩相平衡进行实验研究时,提出了铬尖晶 石压力计,在 CaO-MgO-Al₂O₃-SiO₂ 化学系统相平衡 实验中考虑了 Cr₂O₃ 的组分效应,标定了铬尖晶石 压力计,适用于尖晶石+橄榄石+斜方辉石+单斜 辉石+石榴石的五相地幔岩石组合。定量化实验得 出 Fe³⁺与 Cr³⁺在尖晶石中的摩尔分数之和同压力 之间存在线性关系,其公式为 $P = P^0 + 27.9$ (X 2 + X 2)。其中,P 和 P^0 单位均为 10⁸Pa, P^0 选取 18.7, X 2 表示 Cr 在铬尖晶石中的摩尔分数,X 2 表示 Fe³⁺在铬尖晶石中的摩尔分数。选取电子探针数据 中 7 个铬尖晶石样品的核部数据进行计算,结果压 力为 2.76~3.00 GPa,平均 2.87 GPa(表 5)。以 1 GPa 相当于由地表向下 31 km 的简单压力梯度计 算,得出其形成深度为 87~93 km,平均值为 89 km。

4.1.3 氧逸度

氧逸度的估算主要依赖于岩浆岩中贫铁矿物的 Fe²⁺与 Fe³⁺含量关系(Sack *et al*., 1980)。假设地 幔物质原始状态只含 Fe²⁺,Fe³⁺的形成是氧化作用 结果。Fudal(1965)指出化学平衡方程 4 FeO_{1.5} = 4 FeO + O₂的平衡系数关系 ln([FeO_{1.5}]/[FeO])= 0.25 ln f_{O_1} + lnK 可用来计算氧逸度。

本文选用了 Ballhaus 等(1991)的计算方法来估 算氧逸度,公式为 $\Delta \log(f_{O_2})_{FMQ} = 0.27 + 2505/T - 400P/T - 6\log(X_{Fe}^{olv}) - 3200(1 - X_{Fe}^{olv})/T + 2\log X_{Fe}^{se} + 4\log X_{Fe}^{sas} + 2630(X_{A}^{sas})/T$,其中 P 的单位为 GPa,T 的单位为 K, X_{Fe}^{olv}和 X_{Fe}^{sas}分别表示为橄榄 石和尖晶石中的 Fe²⁺/(Mg + Fe²⁺),X_{Fe}^{sas} 表示尖晶 石的 Fe³⁺在全铁中的比值,X_{A}^{slv}表示尖晶石中 Al 与 三价元素总和的比值,X_{Fe}^{slv}使用上文中 Fabries (1979)提出的 $\ln K_D^0 = 0.34 + 1.06(Y_{C}^{sss})$ 和其中的 Mg、Fe²⁺比值关系计算求得。所求 $\Delta \log(f_{O_2})_{FMQ}$ 为 相对氧逸度,氧缓冲剂为 FMQ,即铁橄榄石-磁铁矿 -石英氧缓冲剂。这一公式适用于上地幔成因岩石。本文选取 7 个铬尖晶石样品的核部数据进行计算,结果见表 6。而使用上文中计算的压力值进行计算时,所求相对氧逸度为FMQ - 1.50~FMQ - 2.92

Fig. 6 Classification of altered Cr-spinel (after Соколов, 1958)
1—高铁铬铁矿; 2—富铁铬铁矿; 3—富铁铝铬铁矿; 4—富铁富
铬尖晶石; 5—富铁铝富铬尖晶石; 6—富铁铬尖晶石; 7—铬尖晶
石; 8—铝富铬尖晶石; 9—富铬尖晶石; 10—铝铬铁矿; 11—铬
铁矿; 12—高铁富铬尖晶石

1—ferri-chromite; 2—ferro-chromite; 3—ferro-alumochromite; 4 ferro-chromopicotite; 5— ferro-alumopicotite; 6—ferropicotite; 7 picotite; 8—alumopicotite; 9—chromopicotite; 10—alumochromite; 11—chromite; 12—ferri-chromopicotite

表 4 铬尖晶石结晶温度计算结果 Table 4 Crystallization temperatures of Cr-spinels

样品号	HYS-5 -12	HYS-5 -10	HYS-2 -2-9	HYS-2 -2-8	HYS-3 -3-4	HYS-3- 3-3	HYS-3- 3-1
$Y_{\mathrm{Cr}}^{\mathrm{sp}}$	0.59	0.59	0.47	0.54	0.53	0.50	0.49
t∕°C	1 362	1 359	1 394	1 375	1 382	1 390	1 391

表 5 上地幔压力计算结果 Table 5 Crystallization pressure of Cr-spinels in the

			upper	manue			
样品号	HYS-5	HYS-5	HYS-2	HYS-2	HYS-3	HYS-3	HYS-3
	-12	-10	-2-9	-2-8	-3-4	-3-3	-3-1
$X_{ m Fe}^{ m sp}$	0.017	0.015	0.013	0.007	0.008	0.010	0.012
$X ^{ m sp}_{ m Cr}$	0.39	0.39	0.31	0.36	0.35	0.33	0.32
P/GPa	2.99	3.00	2.76	2.88	2.86	2.81	2.81
<i>H</i> /km	93	93	86	89	89	87	87

	表 6	上地	幔氧逸	度ì	十算	结果	
ole 6	Oxve	zen fue	gacifies	of	the	upper	man

tla

Tak

	Tuble 0	OAJSC	n ruguei	ties of t	ne uppe	1 maner	<u> </u>
样品是	HYS-5	HYS-5	HYS-2	HYS-2	HYS-3	HYS-3	HYS-3
	-12	-10	-2-9	-2-8	-3-4	-3-3	-3-1
t∕°C	1 362	1 359	1 394	1 375	1 382	1 390	1 391
$X_{ m Fe}^{ m olv}$	0.34	0.31	0.41	0.35	0.35	0.37	0.35
$X_{{ m Fe2}+}^{ m sp}$	0.51	0.48	0.55	0.51	0.51	0.51	0.50
$X_{{ m Fe3}+}^{ m sp}$	0.089	0.086	0.066	0.038	0.045	0.053	0.066
$X_{ m Al}^{ m sp}$	0.39	0.38	0.51	0.45	0.46	0.49	0.49
$\Delta \log f_{O_2}$	-1.51	-1.50	-2.07	-2.92	-2.65	-2.35	-1.95

log 单位,平均值为 FMQ-2.14 log 单位。

4.2 地幔的部分熔融程度

过去的研究表明,地幔橄榄岩中 $Cr^{\#}$ 随地幔岩 部分熔融程度和结晶压力的增高而增高(Dick and Bullen,1984)。因此, $Cr^{\#}$ 值常被用来作为推测地幔 源区熔融程度和压力的指示标志。本文选用 Hellebrand 等(2001)提出的部分熔融计算公式进行计 算,公式为 $F = 10 \ln(Cr^{\#}/100) + 24$,其中,F 以% 表示, $Cr^{\#} = 100 Cr/(Cr + Al)$,适用条件 $Cr^{\#} = 0.1$ ~0.6。应用此种方法,使用铬尖晶石核部数据估算 地幔熔融程度,结果见表 7。去除 $Cr^{\#} > 60$ 的数据 后,得 F 为 16.7%~18.0%,平均值为 17.3%。

表 7 地幔熔融程度计算结果

Table 7	Partial melt	ing degrees	of the	upper	mantle
---------	--------------	-------------	--------	-------	--------

ᄷᇢᇢ	HYS-5	HYS-5	HYS-2	HYS-2	HYS-3	HYS-3	HYS-3
1+00 5	-12	-10	-2-9	-2-8	-3-4	-3-3	-3-1
Cr [#]	60.24	60.76	48.17	54.84	53.25	50.32	50.36
F1%	18.93	19.02	16.70	17.99	17.70	17.13	17.14
111							

4.3 地幔性质和构造环境

在 Dick 和 Bullen (1984)提出的铬尖晶石 Cr[#]-Mg[#]图解(图7)中,满大勒克蛇绿岩中的铬尖晶石 并未落入经典的深海橄榄岩区域,而是位于与深海 橄榄岩近似平行排列的阿尔卑斯型橄榄岩区域。 Dick 和 Bullen (1984)指出,该类橄榄岩形成于亏损 地幔。

而在图 8 中,排除 TiO₂ 含量低于检测线的矿物 点位后,TiO₂ 与 Cr[#]关系投点大部分落入亏损地幔 区域,这与估算出的较高的地幔熔融程度相符。另 外,蛇纹岩的稀土元素标准化曲线(作者等未发表数 据)也显示出轻稀土元素相对亏损、重稀土元素相对 富集的特征。这也表明蛇纹岩代表了亏损地幔。

一般而言,软流圈地幔温度为1280~1350℃ (McKenzie and Bickle, 1988),压力约为3 GPa。本 文计算铬尖晶石的形成温度为1359~1394℃,形成 压力为2.76~3.00 GPa,处于石榴石二辉橄榄岩的 稳定相区内(图9、图10),即铬尖晶石的寄主橄榄岩 原岩为石榴石二辉橄榄岩。铬尖晶石的温压条件与 软流圈温压条件近似,则寄主岩石可能形成于软流 圈地幔。

本文估计出的地幔部分熔融程度F为16.7% ~18.0%,平均值为17.3%。通常认为,洋中脊拉斑 玄武岩是地幔橄榄岩部分熔融20%~30%的产物,

洋中脊拉张速率随地幔熔融程度变化,呈现正相关的变化趋势(Forsyth, 1993; Hellebrand *et al.*, 2002)。本文估算出的熔融程度小于 20% 暗示其不 是形成于洋中脊环境,而有可能是玄武岩分布面积 较小的大地构造区域,如处于大洋演化老年期的陆 间洋盆或开裂的岛弧地区。

在 Kamenetsky 等(2001)的分类图(图 11)中,满 大勒克蛇绿岩的铬尖晶石大部分落在了消减带橄榄 岩(SSZ Peridotite)和深海橄榄岩(Abyssal Peridotite) 重叠的区域,并且更靠近消减带的中心部位,推测橄 榄岩的形成环境可能是洋中脊向消减带过渡的部 位,或者更可能是消减带。而在Guillot等(2001)提

(据 Klemme和 O 'Neill, 2000) Fig. 9 Transition from garnet lherzolite to spinel lherzolite in the CMAS system(after Klemme and O 'Neill, 2000)

图 10 无水地幔温度压力图解(据张招崇等 2004) Fig. 10 Pressure-temperature diagram for the melting of anhydrous mantle lherzolite(after Zhang Zhaochong *et al.*, 2004)

图 11 铬尖晶石核部形成环境判别图(据 Kamenetsky 等, 2001)

图 12 铬尖晶石核部形成环境判别图(据 Guillot 等 2001) Fig. 12 $\operatorname{Cr}^{\#}$ - Mg[#] compositional relationships of cores of Crspinels from fore-arc and oceanic mantle(after Guillot *et al.*, 2001)

出的分类图中(图 12),可以被划分为弧前环境。

另外,前人研究表明,满大勒克蛇绿岩所处的南 天山晚古生代蛇绿岩带代表伊犁板块和塔里木板块 的最终碰撞缝合线,指示大洋缩小后的有限洋盆环 境(汤耀庆等,1995)。该蛇绿岩套的基性火山岩枕 状构造不发育,岩性为玻基拉斑玄武岩,进一步指示 其形成于弧前环境。

综上,可以推测,铬尖晶石的寄主橄榄岩源区为 石榴石二辉橄榄岩,生成于亏损的软流圈地幔,对应 的大地构造位置为弧前盆地。

4.4 矿物成分分带的形成机制

满大勒克蛇绿岩中的地幔橄榄岩大部分蛇纹石 化,其中的蛇纹石由橄榄石或辉石蚀变而形成,铬尖 晶石散布于其中。铬尖晶石成分分带中边缘富 Fe, 而贫 Al、Mg 和 Cr,核部与之相反。这种边缘富 Fe 而贫 Mg 的特征是铬尖晶石经受了由温度降低导致 的亚固相平衡作用的结果(Ozawa,1983)。当温度 降低时,Fe 从橄榄石或辉石向相邻的铬尖晶石扩散, 而 Mg 则相反。而 Cr³⁺的晶体场稳定能要高于 Fe³⁺,在矿物结晶的早期 Cr³⁺比 Fe³⁺更易于占据三 价阳离子填充的八面体空隙。

 Fe^{2+} 与 Fe^{3+} 变化趋势相同,均是边部较核部富 集。但是, Fe^{3+} (/ $Fe^{2+} + Fe^{3+}$)比值从边部到核部显 示明显的降低趋势(图 13)。由于 Fe^{3+} (/ $Fe^{2+} + Fe^{3+}$) 比值与 f_{Q} 存在正相关关系(Hill and Roedder, 1974), 可以定性推断出边部矿物形成时环境中的 f_{Q} 较高。

与岩浆结晶分异成因的铬尖晶石显示出由核到 边Cr[#]降低、Mg[#]增高有所不同,满大勒克蛇绿岩中 的铬尖晶石,显示出明显的由核到边Cr[#]增高、Mg[#] 降低的趋势(图5),故环带的形成不能归类为岩浆成

图 13 铬尖晶石颗粒 Fe^{3+} ($Fe^{2+} + Fe^{3+}$) 变化趋势图 Fig. 13 Fe^{3+} ($Fe^{2+} + Fe^{3+}$) trends of Cr-spinel crystals

因。Barnes 和 Rodder(2001)认为这种铬尖晶石颗粒 从核部到边部 Cr[#]增高、Mg[#]降低的现象,是由超基 性岩经受的变质作用引起的,即不同的物质组成可 以对应不同的变质相。铬尖晶石过渡带部分所对应 的变质相为低角闪岩相(图 14)图 15显示过渡带蚀 变作用的温度在 550~600℃左右,推测是橄榄岩由 于构造运动被推覆到地壳中,温度降低导致亚固相 平衡,造成铬尖晶石边缘蚀变为铬铁矿所致。边部 投点落在了铁尖晶石相区,推测其形成温度小于 500℃。在电子探针矿物鉴定中,发现部分不透明矿 物为磁铁矿。一般认为,磁铁矿是橄榄石中含铁端 员蛇纹石化的产物(Barnes,2000)。岩石中橄榄石

图 15 与 Fo90 橄榄石平衡的铬尖晶石稳定性判别图 (据 Barnes, 2000)

蚀变为蛇纹石的过程提供了含铁流体。该种流体同 铬尖晶石相互作用,在较高氧逸度的条件下,造成流 体中的 Fe 置换了其他填充八面体空隙的原子 Al 和 Cr,使铬尖晶石边部更加富 Fe 而贫 Al、Cr。在变质 作用发生时,同硅酸盐类矿物(橄榄石)反应的过程 中,同 Cr 元素相比,铬尖晶石更倾向于流失 Al 元 素,于是 Cr[#]从核到边表现出升高趋势。

以上讨论表明,研究区的铬尖晶石经历了温度 由高到低、氧逸度由低到高的演变过程。这暗示了, 寄主橄榄岩经历了同样的过程,即在高温高压的地 幔环境由于构造变动被推覆到地壳,定位之后又经 历了区域变质作用。

5 结论

(1)满大勒克蛇绿岩中的铬铁矿具有明显的环带特征,从核部到边部呈现出由铬尖晶石→铬铁矿 →磁铁矿的变化特征。在铬尖晶石矿物分类中,核部归类为富铝铬铁矿,过渡带及边部归类为高铁铬铁矿,起流带及边部归类为高铁铬铁矿,表现出由核部到边部,由富Al、Cr和贫Fe到贫Al、Cr、富Fe的变化趋势。

(2) 铬尖晶石的形成温度为 1 359~1 394℃,平 均值为 1 379℃;压力为 2.76~3.00 GPa,平均值为 2.87 GPa;所处的地幔氧逸度为 FMQ-1.50~FMQ -2.92 log 单位;地幔熔融程度 F 为 16.7%~ 18.0%,平均值为 17.3%。

(3)满大勒克蛇绿岩的变质橄榄岩单元的原岩 为石榴石二辉橄榄岩,形成于亏损的软流圈地幔,对 应于弧前盆地环境。

(4) 铬尖晶石经历了温度由高到低、氧逸度由 低到高的演变过程。这种变化反映了满大勒克蛇绿 岩经历了高温高压的地幔环境(低氧逸度),到其随 构造变动被推覆到地壳,定位之后经历了区域变质 作用(高氧逸度)。

致谢 莫宣学院士在本文写作过程中提供了建 设性的意见,匿名审稿人也对稿件提出了宝贵的修 改意见,在此表示诚挚的谢意。

References

Ballhaus C, Berry R F and Green D H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer : implications for the oxidation state of the upper mantle [J]. Contributions to Mineralogy and Petrology , $107:27 \sim 40$.

- Barnes S. 2000. Chromite in Komatiites , II. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism[J]. Journal of Petrology , 41 : 387~409.
- Barnes S and Roeder P. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology , 42 : 2 279~2 302.
- Dick H and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas [J]. Contributions to Mineralogy and Petrology, 86:54~76.
- Dong Yunpeng , Zhou Dingwu , Zhang Guowei , et al. 2005. Tectonic setting of the Wuwamen ophiolite at the margin of Middle Tianshan Belt J]. Acta Petrologica Sinica , 21:37~44 (in Chinese with English abstract).
- Fabries J. 1979. Spinel-Olivine geothermometry in peridotites from ultramafic complexes J]. Contributions to Mineralogy and Petrology, $69:329 \sim 336$.
- Forsyth D W. 1993. Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath mid-ocean ridges[J]. Journal of Geophysical Research, 98:16 073 ~ 16 079.
- Fudali R F. 1965. Oxygen fugacities of basaltic and andesitic magmas [J]. Geochimica Cosmochimica Acta, 29:1063~1075.
- Gao Jun, Tang Yaoqing, Zhao Min, et al. 1995. The preliminary studies on tectonic environment of formation and geological and geochemical characters of ophiolites, South Tianshan Mountains, Xinjiang J J. Acta Petrologica Sinica, 11:85 – 97(in Chinese with English abstract).
- Guillot S, Hattor K, Sigoyer J, et al. 2001. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites[J]. Earth and Planetary Science Letters, 193:115~127.
- Hao Jie and Liu Xiaohan. 1993. Ophiolite mélange time and tectonic evolutional model in south Tianshan area J]. Chinese Journal of Geology, 28:93 ~95 (in Chinese with English abstract).
- He Guoqi , Li Maosong , Liu Dequan , et al. 1994. Paleozoic Evolution and Metallogenesis in Xinjiang , China M J. Urumqi : Xinjiang People 's Publishing House , 1~437 (in Chinese).
- Hill R and Roeder P. 1974. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity J J. Journal of Geology , 82 :709 ~729.
- Hellebrand E , Snow J E , Dick H , et al. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites J]. Nature , 410 :677~681.
- Hellebrand E , Snow J and Muhe R. 2002. Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions [J]. Chemical Geology , 182:227~235.
- Irvine T N. 1965. Chromian spinel as a petrogenetic indicator Part 1 , theory[J]. Canadian Journal of Earth Sciences , 2:648~672.
- Kamenetsky V, Crawford A and Meffre S. 2001. Factors controlling chemistry of magmatic spinel : an empirical study of associated o-

livine , Cr-spinel and melt inclusions from primitive rocks J]. Journal of Petrology , 42:655~671.

- Klemme S and O 'Neill H. 2000. The near-solidus transition from garnet lherzolite to spinel lherzolite[J]. Contributions to Mineralogy and Petrology , 138 : 237~248.
- Liu Benpei , Wang Ziqiang and Zhang Chuanheng. 1996. Tectonic Framework and Evolution in Southwest Tianshan Mountains , China [M]. Wuhan : China University of Geosciences Press , $1 \sim 120$ (in Chinese with English abstract).
- Long Lingli, Gao Jun, Xiong Xianming, *et al*. 2006. The geochemical characteristics and the age of the Kule Lake Ophiolite in the southern Tianshar[J]. Acta Petrologica Sinica, $22:65 \sim 73$ (in Chinese with English abstract).
- Ma Zhongping , Xia Linqi , Xu Xueyi , *et al* . 2006. Geochemical characteristics of basalts : evidence for the tectonic setting and geological signif icance of Kulehu ophiolite , South Tianshan Mountains J]. Acta Petrologica et Mineralogica , 25 : 387 ~ 400 in Chinese with English abstract).
- McKenzie D and Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere [J]. Journal of Petrology , 29:625-680.
- O Neill H. 1981. The transition between spinel lherzolite and garnet lherzolite, and its use as a Geobarometer J. Contributions to Mineralogy and Petrology, 77:185~194.
- Ozawa. 1983. Evaluation of olivine-spinel geothermometry as an indicator of thermal history for peridotites J]. Contributions to Mineralogy and Petrology , 82:52-65.
- Pal T and Mitra S. 2004. P-T- f_{O_2} controls on a partly inverse chromitebearing ultramafic intrusive : an evaluation from the Sukina Massif , India J J. Journal of Asian Earth Sciences , 22 : 483~493.
- Reodder P , Campbell I and Jamieson H. 1979. A re-evaluation of the olivine-spinel geothermometer[J]. Contributions to Mineralogy and Petrology , 68 : 325~334.
- Sack R , Carmichael I , Rivers M , et al. 1980. Ferric-ferrous equilibria in natural silicate liquids at 1 Bar[J]. Contributions to Mineralogy and Petrology , 75:369~376.
- Stixrude L and Bertilloni C L. 2005. Thermodynamics of mantle minerals-I. Physical properties [J]. Geophysical Journal International, 162:610~632.
- Tang Yiaoqing , Gao Jun , Zhao Min , et al. 1995. The Ophiolites and Blueschists in Southwestern Tianshan Orogenic Belt , Xinjiang , North China M]. Beijing : Geological Publishing House , 59 ~ 97(in Chinese with English abstract).
- Wang Runsan , Wang Yan , Li Huimin , et al. 1998. Zircon U-Pb age and its geological significance of high-pressure terrane of granulite facies in Yushugou area , south Tianshan[J]. Geochimica , 27:517~ 522 (in Chinese with English abstract).
- Wood B andVirgo D. 1989. Upper mantle oxidation state : Ferric iron contents of lherzolite spinels by ⁵⁷Fe Mössbauer spectroscopy and resultant oxygen fugacities J]. Geochimica et Cosmochimica Acta , 53 : 1 277~1 291.

- Xiao Xuchang , Tang Yaoqing , Feng Yimin , et al. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions [M]. Beijing : Geological Publishing House , $1 \sim 169$ (in Chinese with English abstract).
- Yang Haibo , Gao Peng , Li Bing , et al. 2005. Geological characteristics of Dalubayi Ophiolite in West Tianshan , Xinjiang J J. Xingjiang Geology , 23:123~126(in Chinese).
- Zhang Jian , Xu Haishan , Wang Denghong , et al. 2009. Alteration Characteristics of Ore-forming Cr-spinel in the Sartokay Chromite Ore District , Xinjiang J]. Acta Geoscientica Sinica , 30:599~606 (in Chinese with English abstract).
- Zhang Qi and Zhou Guoqing. 2001. Ophiolites of China[M]. Beijing : Science Press, 1~117 in Chinese with English abstract).
- Zhang Zhaochong , Hao Yanli and Wang Fusheng. 2004. Picrites in large igneous provinces and their implications J . Geoscience Frontier , $10:105 \sim 114$ (in Chinese with English abstract).
- Zhu Zhixin. 2007. The Geological Components and Tectonic Evolution of South Tianshan, Xinjiang D]. Beijing : Chinese Academy of Geosciences, Dissertation for Doctoral Degree(in Chinese with English abstract).
- Zhu Zhixin, Li Jinyi, Dong Lianhui, et al. 2008. Age determination and geological significance of Devonian granitic intrusions in Seriyakeyilake region, northern margin of Tarim Basin, Xinjiang J J. Acta Petrologica Sinica, 24:971~976(in Chinese with English abstract).
- Г. А. Соколов (translated by Zhu Fuxiang, Li Binglun, Yuan Qilin, et al). 1985. Chromite Deposits in Ura[M]. Beijing : Geological Publishing House, 12(in Chinese).
- 附中文参考文献
- 董云鹏 周鼎武 涨国伟 ,等. 2005. 中天山南缘乌瓦门蛇绿岩形成环 境 J]. 岩石学报 , 21:37~44.

- 高 俊 汤耀庆 赵 民 等. 1995. 新疆南天山蛇绿岩的地质地球化 学特征及形成环境初探 J]. 岩石学报, 11:85~97.
- 郝 杰,刘小汉.1993. 南天山蛇绿混杂岩形成时代及大地构造意义
 [J]. 地质科学,28:93~95.
- 何国琦 ,李茂松 ,刘德权 ,等. 1994. 中国新疆古生代地壳演化与成矿 [M]. 乌鲁木齐:新疆人民出版社 ,1~437.
- 刘本培,王自强,张传恒.1996.西南天山构造格局与演化[M].武 汉:中国地质大学出版社,1~120.
- 龙灵利,高 俊 熊贤明,等. 2006. 南天山库勒湖蛇绿岩地球化学特 征及其年龄[J]. 岩石学报, 22:1065~1073.
- 马中平,夏林圻,徐学义,等.2006.南天山库勒湖蛇绿岩形成环境及 构造意义——基性熔岩的地球化学证据[J].岩石矿物学杂志, 25:387~400.
- 索科洛夫著(朱福湘,李秉伦,袁启林,等译).1958. 乌拉尔铬铁矿 [M].北京:地质出版社,12.
- 汤耀庆 高 俊 赵 民 ,等. 1995. 西南天山蛇绿岩和蓝片岩[M]. 北京:地质出版社, 59~97.
- 王润三,王 焰 李惠民 等. 1998. 南天山榆树构高压麻粒岩地体锆 石 U-Pb 定年及其地质意义[J]. 地球化学, 27:527~522.
- 肖序常,汤耀庆,冯益民,等. 1992.新疆北部及其邻区大地构造 [M].北京:地质出版社,1~169.
- 杨海波 高 鹏 李 兵 等. 2005. 新疆西天山达鲁巴依蛇绿岩地质 特征 J]. 新疆地质,23:123~126.
- 张 建 徐海山,王登红,等. 2009. 新疆萨尔托海铬铁矿造矿铬尖晶 石蚀变特征及指示意义[J]. 地球学报, 30:599~606.
- 张 旗,周国庆. 2001. 中国蛇绿岩[M]. 北京:科学出版社,1~ 117.
- 张招崇 郝艳丽,王福生. 2004. 大火成岩省中苦橄岩的研究意义 [J]. 地学前缘, 10:105~114.
- 朱志新. 2007. 新疆南天山地质组成和构造演化(博士学位论文) [D]. 北京:中国地质科学院.
- 朱志新,李锦轶,董连慧,等.2008.新疆塔里木北缘色日牙克依拉克 一带泥盆纪花岗质侵入体的确定及其地质意义[J].岩石学报, 24:971~976.