山西代县金红石矿床洪塘矿区含矿岩石的地球 化学及年代学

庞尔成¹ 徐永婧^{1,2} 施光海² 贾琇明³ 张尊侠⁴

 (1. 山西省地勘局 二一七地质队,山西大同 037008;2. 中国地质大学,北京 100083;3. 太原理工大学, 山西太原 030024;4. 青海省有色地勘局 矿勘院,青海 西宁 810007)

摘 要:山西代县洪塘金红石矿区是代县金红石矿3个主要矿区之一,含金红石矿的岩石主要有4种类型:直闪石 片岩和蛭石化阳起-直闪石片岩、钠长斜绿泥石阳起-直闪石片岩和蛭石化阳起-直闪石英岩。除1个样品已硅化 (HT-5,石英岩)外,SiO2含量为47.83%~55.03%,富 MgO、TiO2和 Al2O3,低 CaO、Na2O和 K2O,轻稀土元素略亏 损 重稀土元素分布较平坦,具明显负 Eu 异常,大离子亲石元素含量变化较大,高场强元素总体上没有明显分异, Ti、Zr、Hf和Y轻微亏损,Ba、Sr和 Rb 亏损。据以上地球化学特征推测其原岩化学组成等同于基性岩浆岩类中的洋 中脊拉斑玄武岩类,后经过变质作用形成上述含矿岩石。含矿岩石中锆石的内外部生长特征、矿物包裹体特征以及 U-Pb 年龄结果显示,该区含矿原岩——中基性玄武质岩浆岩的成岩时代为2530Ma 左右,后可能经历了2530~ 2370 Ma和1900 Ma 左右的热液流体活动参与的高角闪岩相到绿片岩相的区域变质事件。 关键词:锆石年代学;直闪石片岩,金红石矿床,山西代县

中图分类号:P597+.3;P588.12

○ 文章编号:1000-6524(2010)05-0497-10

Geochemistry and chronology of Hongtang ore-bearing rocks in the Daixian rutile deposit, Shanxi Province

文献标识码:A

PANG Er-cheng¹, XU Yong-jing^{1,2}, SHI Guang-hai², JIA Xiu-ming³ and ZHANG Zun-xia⁴

(1. No. 217 Geological Party, Shanxi Bureau of Geological Exploration, Datong 037008, China; 2. China University of Geosciences, Beijing 100083, China; 3. Taiyuan University of Technology, Taiyuan 030024, China; 4. Qinghai Bureau of Geological Exploration for Nonferrous Metals, Xining 810007, China)

Abstract: The Daixian rutile deposit is located in western Hengshan and belongs geotectonically to the central zone of North China Craton. The exposed strata mainly comprise a suite of medium-grade regional metamorphic rocks of Upper Archaean Wutai Group. The rocks have undergone multi-stage amphibolite facies metamorphism and deformation. Recent exploration shows that the Daixian rutile deposit is one of the largest rutile deposits in China with reserves up to 3.7 million tons of TiO₂. The Hongtang rutile orefield is one of the three main orefields in the Daixian rutile deposit. The rutile-bearing rocks mainly include anthophyllite schist, vermiculitized antinolite schist, albite-clinochlore-bearing antinolite schist and vermiculitized actinolite-bearing quartzite. Except for one silicified sample (HT-5, quartzite), they contain 47.83% ~ 55.03% SiO₂, high MgO, TiO₂ and Al₂O₃, low CaO, Na₂O and K₂O, and are depleted in LREE and roughly flat in HREE and have conspicuous negative Eu anomalies. LILE content changes slightly, and differentiation of HFSE is inconspicuous. The rocks are slightly poor in Ti, Zr, Hf, Y, and Ba, Sr, Rb. The samples with high Ti (TiO₂>4%) have conspicu-

收稿日期:2009-07-21;修订日期:2010-02-23

基金项目:山西省国土资源厅"山西省代县羊延寺金红石矿普查"项目资助

作者简介:庞尔成(1967-),男、高级工程师,主要从事矿物学及矿床学方面的研究, E-mail: pangercheng@sohu.com。

ous positive Nb and Ta anomalies. The authors thus infer that the protolith of the rutile deposit is chemically equivalent to mid-ocean ridge tholeiite, and that the ore-bearing rocks were formed through crystallization differentiation of anorthite and other types of metamorphism and deformation. The growth characteristics and mineral inclusions of zircons in the ore-bearing rocks as well as U-Th-Pb ages show that the protolith of the Hongtang rutile orefield was formed around 2 530 Ma and might have experienced two regional metamorphic events with hydrothermal fluid mixture during 2 370 \sim 2 530 Ma and around 1 900 Ma, corresponding respectively to high grade amphibolite facies and medium-pressure and low-temperature greenschist facies.

Key words : zircon geochronology ; anthophyllite schist ; rutile deposit ; Daixian , Shanxi

金属钛具有密度小、强度高、耐腐蚀、抗高温等 特性,是一种广泛应用于化工、军事和空间技术等领 域中的金属。作为提取金属钛和制作钛白粉的一种 重要工业矿物原料,金红石矿的研究在国内外一直 都很受重视(如 Wang et al.,2005; Carruzzo et al. 2006; Triebold et al.,2007)。我国钛资源相对 比较丰富,但主要是钛铁矿型资源,在约占98%的钛 资源总量中,金红石资源约占2%(张云等,2000)。 我国天然金红石总资源有限,但其仍是重要的钛资 源组成。在我国天然金红石资源中,绝大部分为原 生矿石,储量占资源总量约86%,砂矿金红石约占 14%(吴贤等,2006)。

原生金红石矿石多赋存于变质岩系中,矿床成 因类型主要有变基性岩矿床和沉积变质矿床两种。 原生变基性金红石矿床的矿体一般呈似层状、脉状 或不规则透镜状。该类矿床规模较大,矿石品位低, TiO,含量一般为2%左右,典型矿床有湖北枣阳大 阜山金红石矿、江苏北部变质榴辉岩型和河南方城 柏树岗金红石矿床(张云等,2000;吴贤等,2006;徐 少康 2001)。 枣阳大阜山金红石矿矿体多呈不规则 透镜状赋存在变基性岩中,TiO2 平均含量 2.32%, 相当长时间内一直是我国探明储量最大的原生金红 石矿床(徐少康,2006)。山西省代县金红石矿是我 国另一超大型金红石矿,初步探明该矿总资源量达 370 多万吨。矿体呈似层状产出,矿石虽然品位偏 低,但易选,储量丰富,金红石纯度高,杂质少,且可 综合回收钛铁矿、磁铁矿等。该矿是我国金红石的 一个重要产区,最近的勘探结果显示其储量位居全 国之首,在我国属超大型金红石矿床(梁眉龙等, 2007)

最近有较多学者对该矿进行了不同方面的研

究,初步分析了山西代县羊延寺-张山沟直闪岩矿床 特征及其成因(董月田等,2002),提交该金红石矿 的普查与详查地质报告(梁眉龙等,2004;梁眉龙 等2007)⁹⁹,研究该矿床的基本地质特征(徐少康 等2000)和变质作用(徐少康等,2002),并探讨其 成矿关系(徐少康等,2004),最近还开展了矿物学研 究(贾琇明,2007),选矿研究(庞尔成,2005)以及其 内锆石生长特征和包裹体的研究(徐永婧等, 2009)。然而,该矿床的岩石学特征研究工作目前几 乎没有进行,矿石的地球化学性质目前也还不清楚, 物质来源分析及其相应的年代学研究工作开展甚 少。本文对采自代县洪塘矿区4种不同含矿岩石类 型共10个样品进行了岩相学观察和地球化学特征 分析,分析给出了其中直闪岩中的锆石 SHRIMP U-Pb 年龄,讨论了该矿的岩石学成因。

1 地质背景

山西代县金红石矿床地处华北克拉通中部带 (Zhao et al., 2007),分布于山西中台隆-恒山隆起 西段,草垛山-分水岭背斜构造之南翼(图1)。区内 地层展布方向与该背斜轴向一致,呈总体倾向相同 的单斜状产出,地层产状局部变化但无明显次级褶 皱构造。矿区出露地层主要为一套遭受了多期变质 变形的上太古界五台群(AW)的中级区域变质岩系 (图2),由老至新依次为台子底组(AWt),碾子沟组 (AWn)和冰林沟组(AWb),变质程度为绿片岩相-角闪岩相(梁眉龙等,2007¹⁰;贾琇明等,2006)。矿体 顶板围岩为斜长角闪岩及少量变粒岩,底板为直闪 岩,局部为斜长直闪岩,与矿体接触界线明显。断裂 构造比较发育,主要有义成沟-张山沟-羊延寺深大

[●] 梁眉龙 ,等. 2007. 山西省代县洪塘矿区金红石矿普查地质报告. 山西省地质矿产勘查开发局二一一地质队 ,15~24.

❷ 梁眉龙 ,李俊才 周迎新 ,等,2004,山西省代县碾子沟-羊延寺矿区金红石矿普-详查报告,山西省地质矿产勘查开发局二一一地质队,

图 1 山西代县的大地构造位置图 据 Zhao 等(2007)修改] Fig. 1 Geotectonic map of Daixian County, Shanxi Province

断裂带及其伴生的次级断裂构造,该构造以压扭性 为主。区内超基性岩体的侵入分布受滹沱河深大断 裂及其次级构造的控制,岩体普遍遭受了区域变质、 蚀变作用,局部保留了辉石残晶(梁眉龙等,2007¹⁰; 徐少康等,2004)。该金红石矿在空间上自西向东主 要由洪塘、碾子沟、羊延寺3个矿区组成,呈与围岩 产状一致的透镜状产出(图3)。本文研究样品均采 自洪塘矿区。

2 岩相学

含金红石矿物的岩石主要有4种类型。①直闪 石片岩:具片状构造,纤维柱状变晶结构,主要组成 矿物为直闪石(>50%),其次为普通角闪石、斜长 石、金红石,副矿物为锆石、磷灰石、绿帘石和独居石 等,次生矿物主要为绿泥石类矿物。其中直闪石呈 楔形,长0.5~4.0 mm,具有较好的定向性。普通角 闪石为孤岛状,长1.0~5.0 mm,在与直闪石接触处

可见其被直闪石交代的交代结构。金红石呈他形粒 状 主要位于直闪石中或其间以及斜长石颗粒中 其 内未见有钛铁矿出溶的现象。② 蛭石化阳起-直闪 片岩:为鳞片变晶结构,片状构造,主要成分为蛭石 (≥85%)阳起-直闪石(≤10%),含少量斜长石 (1%~5%)和金红石(~2%)。其中蛭石片径一般 0.5~2.0 mm 角闪石为淡绿色粒状,粒度一般 1.0 $\sim 7.0 \text{ mm}$ 斜长石以他形粒状为主 粒度一般为 0.2~3.0 mm 局部见绢云母化。③钠长斜绿泥石阳起 -直闪石片岩 :具鳞片柱状变晶结构 ,片状构造 ,主要 由阳起-直闪石($42\% \pm$)、斜绿泥石($35\% \pm$)、钠长 石(15% ±)、金云母(5% ±)和金红石(~2%)及少 量不透明矿物组成 :④ 蛭石化阳起-直闪石英岩 :具 鳞片粒状变晶结构,块状构造,主要由石英(65%) \pm)阳起-直闪石($10\% \pm$)少量金云母和金红石及 其他不透明矿物组成,可见似脉状的蛭石化(15%~ 20%)。样品中金红石多呈半自形-他形粒状,多依 阳起石-直闪石颗粒而生,其含量为2%~3%,副矿

图 2 山西代县金红石矿床地质简图 据梁眉龙等(2007)修改 P

Fig. 2 Simplified geological map of the Daixian rutile deposit , Shanxi ProvinceQ—第四系的现代松散堆积; \in_1 —寒武系的薄层状灰岩、细砂岩; \in_2 —下寒武统紫色页岩; AWb2—太古界五台群冰林沟组上段的斜长角闪岩束角闪变粒岩; AWb1—太古界五台群冰林沟组下段的斜长角闪岩和角闪黑云裂长片麻岩; AWn2—太古界五台群碾子沟组上段的斜长角闪岩和角闪黑云变粒岩; AWn1—太古界五台群碾子沟组下段的斜长角闪岩和斜长角闪片麻岩; AWt—台子底组的混合岩化斜长角闪片麻岩

Q-modern loose accumulation of Quaternary; \in_1 -thin layer limestone and sandstone of Canbrian; \in_2 -purple shale of Lower Cambrian; AWb2-anorthosite amphibololite with amphibololite granulite of lower section of Binglingou Formation, Wutai Group, Archean; AWb1-anorthosite amphibololite and amphibololite biotite anorthosite gneiss of upper section of Binglingou Formation, Wutai Group, Archean; AWb2-anorthosite amphibololite biotite granulite of upper section of Nianzigou, Formation Wutai Group, Archean; AWn2-anorthosite amphibololite biotite gneiss of lower section of Nianzigou, Formation Wutai Group, Archean; AWn1-anorthosite amphibololite and anorthosite gneiss of lower section of Nianzigou Formation, Wutai Group, Archean; AWn1-anorthosite amphibololite and anorthosite gneiss of lower section of Nianzigou Formation, Wutai Group, Archean; AWt-chorismitic anorthosite amphibololite gneiss of Taizidi Formation

物主要有磷灰石和锆石等。

3 地球化学

含矿岩石样品主量元素和微量元素(含稀土元 素)的测试分析在中国科学院地质与地球物理研究 所岩石圈演化国家重点实验室完成,分别用 Phillips PW2400 X-ray 荧光光谱仪和 VG-PQII ICP-MS 测 试。主量元素测试精度优于 5%,微量和稀土元素精 度约 5%,详细测试步骤可参见 Shi 等(2008)。10 个 样品的主量和微量元素分析结果列于表 1 中。

主量元素特征:直闪石片岩和蛭石化阳起-直闪 石片岩的 SiO₂为 47.83% ~ 55.03%, AbO₃为 5.59%~10.15% MgO为20.32%~25.49% ,前者 TFeO的含量为6.87%~11.11%,比后者略高 (4.00%~5.16%);钠长绿泥石阳起-直闪石片岩的 SiO₂为45.49%,Al₂O₃为18.26%,MgO为 14.32%。总体上,所分析样品CaO含量较低,为 0.66%~3.80%,Na₂O+K₂O含量均低,0.06%~ 2.80%,TiO₂含量较高,0.83%~7.61%,富镁,其 Mg[#]为67.26~85.31。

球粒陨石(Sun & McDonough,1989)标准化的 稀土元素配分型式如图4所示。岩石的 ∑REE 总体 较高,LREE/HREE 在 0.32~3.49 之间,具明显的 负铕异常(δEu=0.20~0.83)。(La/Yb)_N 值变化范 围较宽(0.04~1.89) 羟稀土元素略显亏损,重稀土 表 1 洪塘矿区含金红石矿岩石样品的主量(w_B /%)和微量元素(w_B /10⁻⁶)测试结果 Table 1 Major(w_B /%) and trace element(w_B /10⁻⁶) analyses of Hongtang rutile-bearing rocks

岩石名和	_你 钠长斜绿泥阳起 一直闪片岩		直闪片岩	+	蛭石化阳起 –直闪石英岩		蛭石	5化阳起-直闪	片岩	
样品号	HT-1	HT-2	HT-3	HT-4	HT-5	 HT-6	HT-7	HT-8	HT-9	HT-10
SiO ₂	45.49	52.67	53.57	47.83	79.13	48.42	52.91	55.03	49.46	49.40
TiO ₂	4.28	1.54	0.99	7.61	2.44	3.76	2.28	0.83	2.94	5.99
Al_2O_3	18.26	7.04	5.59	8.13	3.16	10.15	6.35	8.48	9.37	9.91
TFeO	5.96	9.75	11.11	6.87	2.06	4.96	4.39	4.00	5.16	4.35
MnO	0.03	0.07	0.06	0.03	0.01	0.02	0.01	0.01	0.01	0.01
MgO	14.32	22.37	22.82	20.84	9.35	20.63	25.49	22.91	24.42	20.32
CaO	3.42	3.23	2.50	3.80	0.99	3.07	0.66	1.04	0.70	1.38
Na ₂ O	2.22	0.68	0.59	0.81	0.82	1.27	0.79	2.11	0.81	1.66
K_2O	0.58	0.43	0.22	0.29	0.05	0.71	0.77	0.20	1.38	0.52
P_2O_5	0.02	0.02	0.05	0.01	0.06	1.20	0.10	0.04	0.05	0.24
LOI	4.78	2.12	2.12	3.04	1.50	5.42	5.60	5.34	5.02	5.62
し 単の こうしょう しんしょう しんしょ しんしょ	99.34	99.93	99.62	99.26	99.58	99.61	99.36	99.98	99.33	99.39
Mg ⁺⁺	/0.62	69.64	67.26	15.22	6 20	80.62	85.31	85.12	82.56	82.37
Li D-*	20.4	27.0	26.9	17.4	0.20	55.0 1.35	19.0	1 22	27.0	30.3 1.04
De	1.19	134	108	200	131	1.35	-204	221	1.00	1.94
V*	123	115	103	142	65 1	471	114	90.5	151	190
Cr*	227	161	137	470	180	363	219	223	285	350
Co	12.3	17.7	20.6	13.1	4.58	11.5	13.1	12.2	13.4	11.0
Ni *	12.0	15.8	16.8	13.5	5.27	10.7	13.9	13.0	13.7	10.4
Cu*	5.69	5.44	3.60	14.05	4,77	7.55	4.81	3.42	5.23	11.7
Zn*	37.4	36.4	32.6	62.4	16.8	33.2	29.4	18.4	32.3	43.0
Ga	18.4	9.55	8.22	10.4	4.42	14.3	9.50	11.3	13.6	12.2
Rb^*	38.0	29.2	<12.6	18.8	1.91	53.4	57.1	16.3	103	38.4
Sr	44.4	9.94	6.63	6.38	20.3	17.4	4.64	21.2	8.30	22.6
Υ	27.8	26.9	17.8	48.4	21.9	235	44.1	88.2	83.5	94.9
Zr	194	74.1	46.4	283	104	138	141	23.0	183	305
Nb	17.6	6.82	4.65	25.8	11.6	22.8	12.4	7.60	18.9	35.9
Cs	3.24	2.97	1.10	3.23	0.17	8.23	9.26	2.73	13.6	5.94
Ba" L-	10.4	100	37.9	23.8	6.52	85.9	85.2	23.0	127	12.0
La	0.25	4.00	2.08	5.79 15.0	4.01	15.4	0.40	55.2 108	15.9	15.0
Dr.	2.84	3 10	1.54	3 15	2 31	47.0	1.77	108	32.0 8.63	40.9 6.94
Nd	15.2	17.6	7.83	19 7	11 7	55 4	4 55	85.2	45 1	36.0
Sm	5.11	5.95	2.59	6.82	3, 30	23.1	3.15	22.2	14.9	11.8
Eu	1.37	1.33	0.73	1.84	0.55	2.77	0.34	2.46	1.03	1.20
Gd	5.26	5.91	2.74	7.78	3.55	40.3	5.66	21.0	15.8	16.3
Tb	0.87	1.02	0.52	1.47	0.64	7.77	1.25	3.58	2.92	3.04
Dy	5.21	6.21	3.57	9.85	4.23	54.7	9.25	20.4	18.6	20.8
Ho	1.09	1.30	0.83	2.26	0.93	12.1	2.11	4.29	4.01	4.45
Er	3.02	3.70	2.53	6.52	2.81	33.7	6.36	12.0	11.0	12.7
Tm	0.46	0.60	0.43	1.06	0.45	4.96	1.04	1.86	1.66	1.89
Yb	3.07	4.13	2.98	6.98	3.05	32.7	7.24	12.7	10.8	12.4
Lu	0.48	0.68	0.52	1.11	0.50	4.76	1.14	1.93	1.65	1.86
Ht	4.87	1.85	1.26	7.83	3.46	4.74	3.92	0.88	4.89	9.29
Ta^ TTI*	1.32	0.43	0.30	2.15	0.51	1.45	0.78	0.38	1.04	2.54
11 Ph	0.20	0.17	0.09	U.10 1 12	0.04	0.39	0.41	0.15	0.07	0.29
ги В:*	0.06	0.97	0.12	1.12	1.09	2.13	0.99	1.30	1.49	1.01
DI Th	0.00	0.15	0.12 0.12	0.10 0.46	1 04	1 52	0.04	3 61	1 98	2 07
U	0.65	0.25	0.12 0.08	1,66	0.17	0.83	0.27	0.30	0.40	1.03
ΣREE	66.5	72.3	36.8	87.4	52.9	342	44.8	349	204	183
LR/HR	2.42	2.07	1.61	1.36	2.28	0.79	0.32	3.49	2.07	1.50
δEu _N	0.80	0.68	0.83	0.77	0.49	0.27	0.24	0.34	0.20	0.26
(La/Yb)	N 1.38	0.76	0.47	0.37	1.03	0.28	0.04	1.89	1.00	0.71

TFeO 为全铁 LOI 为烧失量, Mg^{\pm} 为镁质指数[$Mg^{\pm} = 100MgO/(MgO + TFeO)$],N 为球粒陨石标准化数值, LR/HR 表示 LREE/HREE , $\delta Eu_N = 2Eu_N/(Sm_N + Gd_N)$,带 * 的元素其结果仅供参考。

图 3 山西代县洪塘矿区金红石矿的野外照片 Fig. 3 Field picture of Hongtang rutile ore body in Daixian County, Shanxi Province

元素大致平坦。原始地幔(Sun & McDonough, 1989)标准化的微量元素蛛网图(图 5)显示,样品中 K、Rb、Ba、Th、U等大离子亲石元素含量的变化范围 较大 Sr 呈现明显的负异常,Ba 相对 Rb 亏损。Nb、 Ta、Sm、Yb 等高场强元素基本不显示明显的分异, Ti、Zr、Hf 和 Y 轻微亏损。另外,如果按照 TiO₂ 含 量进行分类,可以发现高 Ti 样品(TiO₂>4%)均具 有明显的 Nb、Ta 正异常,这清楚地表明样品中富 Ti 矿物(金红石)的含量控制了 Nb、Ta 的特征,而低 Ti 样品则不存在过高的 Nb、Ta 特征。

4 锆石特征及年代学

对矿区富含金红石的直闪石岩样品进行了 SHRIMP 锆石 U-Pb 年龄测定,分析在北京离子探 针中心完成,详细分析流程及原理参见文献刘敦一

等(2003)。应用澳大利亚国立大学地学院标准锆石 SL13(572 Ma,U含量为238×10⁻⁶)标定 TEM 标准 锆石和样品的 U、Th 及 Pb 含量,应用 TEM (417 Ma)进行元素间分馏校正(Williams,1998)计算 Pb/U 的校正值,并计算样品年龄。数据处理采用 Ludwig SQUID 1.0 (Ludwig, 2001)及 ISOPLOT (Ludwig, 1999)程序,应用实测²⁰⁴Pb 校正普通铅。 表 2 中测试数据的误差均为 1σ ,²⁰⁶Pb/²³⁸U 年龄的 加权平均误差为 2σ 。对于年龄较老(大于 800 Ma) 的锆石,采用²⁰⁷Pb/²⁰⁶Pb 年龄结果。

锆石为浅玫瑰色-粉色,次浑圆柱状、粒状及不 规则状 半透明 晶体发育裂纹。所分析的锆石按其 在颗粒上的相对位置和阴极发光图像(图6)下的结 构可分为4种不同类型的锆石,即第Ⅰ类、第Ⅱ类、 第Ⅲ类和第Ⅳ类(徐永婧等 ,2009)。第Ⅰ类锆石位 于整个颗粒的核部(部分颗粒不含核部)5第 || 类锆 石包裹第Ⅰ类锆石 阴极发光下可见韵律环带 第Ⅲ 类锆石为较窄的增生边或以脉状充填于第Ⅱ期锆石 内的裂隙中 阴极发光下最亮 ;第Ⅳ类锆石即点 3.1 对应的锆石,多呈单独生长的颗粒,阴极发光较暗, 无增生边。19个数据点分析结果显示 第 IV 类锆石 具有完全与其他 3 类锆石不同的化学组成 其 Th、U 含量(分别为 5×10⁻⁶和 125×10⁻⁶)和 Th/U 比值 (0.04)都较低。推测第Ⅰ类锆石为残留锆石,第Ⅱ、 Ⅲ类锆石为变质锆石,第Ⅳ类锆石为变质流体活动 中形成的锆石(吴元保等 2004 简平等 2001 ;Vavra et al., 1996 Hoskin & Schaltegger 2003 Rubatto et al. 1999 徐永婧等 ,2009)。在谐和图上 ,有 17 个 数据点集中分布于谐和线上(图 7),其²⁰⁷Pb/²⁰⁶Pb 加 权平均年龄为2532±8Ma,这些点几乎都在 | 和 ||

	206 D.L		701/d(10-	- 6	232Th/	206 DL * /		207 ph. 4		207 DL * /		206 DL * /2381 T	5(17 DL * /206 DL *		208 DL /232 TL		
点号	- % /	n	- HT	²⁰⁶ Pb*	²³⁸ U	²³⁸ U	\pm %	235U	₩	²⁰⁶ Pb*	\pm %	4B/Ma	$\pm 1\sigma$	年龄/Ma	$\pm 1\sigma$	100 mm 年龄/Ma	$\pm 1\sigma$	λ
1.1	0.16	137	349	57.3	2.63	0.4864	1.6	11.16	4.4	0.1664	0.6	2 554.9	34.6	2 522	10	2 628	47	0.940
2.1	0.20	95	486	39.2	5.26	0.4770	1.7	11.02	1.9	0.1676	0.8	2 514.3	35.3	2 534	13	2 549	45	0.912
3.1	0.18	125	Ś	37.0	0.04	0.3438	1.7	5.52	2.3	0.1164	1.6	1,905.0	27.3	1 901	28	1609	229	0.723
4.1	0.44	28	133	11.9	4.90	0.4907	2.0	11.40	2.8	0.1686	1.9	2 573.5	43.3	2 543	32	2 615	57	0.731
5.1	1.04	32	89	13.1	2.86	0.472.6	2.0	11.16	2.5	0.1713	1.5	2495.0	42.0	2 570	26	2 569	59	0.797
6.1	0.42	52	94	21.3	1.88	0.4783	1.8	10.97	2.1	0.1663	1.0	> 2519.8	38.4	2 521	18	2 535	52	0.869
7.1	0.54	10	41	4.1	4.16	0.4619	2.8	10.87	3.6	0.1708	2.3	2 447.7	57.6	2 565	38	2 576	81	0.778
8.1	0.29	82	350	34.3	4.41	0.4858	1.7	11.32	1.9	0.1690	0.9	2 552.3	36.4	2 548	15	2 597	48	0.892
9.1	1.37	36	98	13.5	2.78	0.4267	2.0	8.98	3.3	0.1526	2.6	2 291.0	38.5	2 375	44	2 312	56	0.609
10.1	0.73	26	149	11.0	5.87	0.4810	2.6	11.04	3.1	0.166.5	1.6	2 531.7	55.2	2 523	27	2 227	62	0.856
11.1	0.21	92	414	37.9	4.63	0.4754	1.7	11.00	1.8	0.1677	0.7	2 507.2	35.1	2 535	12	2 548	45	0.920
12.1	1.00	11	16	4.4	1.59	0.4754	2.8	10.92	3.9	0.1666	2.6	2.507.3	58.2	2 524	44	2 524	96	0.728
13.1	0.40	25	13	10.5		0.540.4779	2.1	11.14	2.5	0.1690	1.4	2 518.2	44.3	2 548	23	2 539	84	0.841
14.1	0.15	94	682	39.3	7.48	0.4848	1.7	11.38	1.8	0.1703	0.7	2.548.3	35.3	2 560	11	2 627	45	0.929
15.1	0.91	105	730	42.5	7.16	0.4646	1.7	10.33	2.3	0.1612	1.6	2 460.0	34.4	2 468	26	2 493	43	0.735
15.2	0.22	80	285	33.0	3.68	0.4780	1.7	10.91	1.9	0.1656	0.8	2 518.5	36.2	2 514	13	2 566	47	0.914
16.1	0.29	48	92	20.1	1.97	0.4851	2.0	11.26	2.2	0.1683	1.1	2 549.6	41.2	2 541	18	2 604	56	0.879
17.1	0.59	21	160	8.7	7.89	0.4793	2.2	10.97	2.8	0.1661	1.7	2 524.2	47.0	2 518	29	2 504	60	0.794
18.1	0.34	52	182	22.2	3.59	0.4912	1.8	11.09	2.1	0.1638	1.0	2 576.0	39.0	2 495	16	2 623	53	0.883
${ m Pb}_{ m c}$ ${ m AI}$	Pb*分别	代表普	通铅和	放射成因铅	,7代表误	差相关系数;	采用实测	间的204 Pb 进	行普通钻	驻校正。		7						

表 2 洪塘矿区含金红石矿岩石中锆石的 SHRIMP 年龄分析结果 Table 2 SHRIMP zircon analyses of Hongtang rutile-bearing rocks

第5期

503

图 6 洪塘矿区含矿岩石中的锆石阴极发光图像 Fig. 6 Cathodoluminesence images of zircon grains from Hongtang rutile-bearing rocks

类锆石中。另外有两个点,锆石点3.1的年龄为1 901±28 Ma,为第Ⅳ类锆石,锆石点9.1分别为2 375±44 Ma,其类型特征不明显,测试结果误差略偏 大。

5 讨论与结论

含矿岩石的元素地球化学特征显示该区金红石 矿的母岩可能为镁铁质岩,为正变质岩型。化学组 成上主体与基性岩类的组成相当,部分样品因强烈 的蚀变作用导致了SiO₂含量偏高。地球化学性质 上 岩石与发生钙长石结晶、分异作用之后残留的大 洋拉斑玄武岩相似。其中 Mg[#]较高说明研究样品受 下地壳物质的混染程度较小(Wang et al. 2006)。稀 土元素配分模式显示源区类似于经过结晶分异的现 代洋中脊玄武岩 E-MORB 和 N-MORB 的混合成分, 或类似于 MORB(Schilling et al. 1983)。

依据 Ca 含量较低和具明显负 Eu 异常特征推测 该矿的原始岩浆在演化过程中发生了结晶分异作 用,分离结晶过程中经历了去斜长石化的阶段 (Ashwal,1993;Winter,2001)。此外,微量元素蛛 网图中,大离子亲石元素含量的变化范围较大,表明 岩浆在形成过程中可能参与了较强的地幔热液交代 作用或者形成后受到变质作用影响;而高场强元素, 特别是 Nb、Ta 分异不明显,表明其原始岩浆受到陆 壳物质的混染较少。Sr、Ba 与 Ca 具有相似的化学性 质 彼此间常发生类质同像置换。另外,由于 Ba 比 Sr 相对于 Ca 的离子半径更大,Sr 的负异常更明显 一些(解广轰,2005)。这些特征均显示了分离结晶 过程中经历了去斜长石化作用。

含矿直闪岩中的4类锆石按形成的先后顺序分 别代表了不同的生长期次 SHRIMP 锆石 U-Pb 年 龄结果显示:多数第Ⅰ、Ⅱ类锆石的年龄在2530 Ma 左右 形成于太古宙 第Ⅲ类和第Ⅳ类可能为变质作 用同期生长的锆石,年龄为1900 Ma 左右,属于古元 古代产物。其中第 | 类和第 || 类锆石的年龄接近, 这可能是由于这两类锆石形成年龄差别本来就很 小 即其形成年龄差别大于测试误差范围,或者第Ⅱ 类锆石形成时第 T 类锆石 U-Pb 体系发生重置。 Zhao 等(2000)认为在2550~2520 Ma 期间,大洋岩 石圈俯冲和脱水致使上部的地幔楔发生部分熔融。 形成了熔浆喷出地表形成中部带内的玄武岩浆。该 研究结果时代上与本文的一致。徐永婧等(2009)发 现在第 || 类锆石中有直闪岩形成时所包裹的直闪石 +钙铁辉石矿物,在第1V类锆石中有钠长石+石英 + 白云母矿物包裹体组合,由此推测该区原位或近 于原位的中基性玄武质岩浆岩的成岩时代为 2 530 Ma 左右 后期可能经历了 2 530~2 370 Ma 和 1 900 Ma左右的热液流体活动参与的区域变质事件。错 石内部矿物包裹体研究结果显示 后期的变质作用 分别达高角闪岩相和中压低温绿片岩相,其中前者 可能与华北克拉通在 25 亿年时发生的大规模流体 活动有关,并可能导致锆石中 U-Th-Pb 体系在此时 期发生重置。

致 谢 感谢北京离子探针中心张维在 SHRIMP 锆石 U-Pb 测试中、中国科学院地质与地 球物理研究所李禾、靳新娣在岩石地球化学分析过 程中的帮助和支持!感谢匿名审稿人提出的建设性 修改意见。

Reference

- Ashwal L D. 1993. Anorthosites [M]. Germany : Springer-Verlag Berlin Heidelberg, 37~42.
- Carruzzo S , Clarke D B and Pelrine K M. 2006. Texture , composition ,

and origin of rutile in the South Mountain Batholith , Nova Scotia [J]. The Canadian Mineralogist , $44:715 \sim 729$.

- Dong Yuetian, Wen Chungui and Guo Meifeng. 2002. Yangyanshi-Zhangshangou anthophyllite deposit characteristics and the preliminary genetic analysis J]. Contributions to Geology and Mineral Resources Research, 17(4):257~261(in Chinese with English abstract).
- Hoskin P W O and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petro-genesis[J]. Reviews in Mineralogy and Geochemistry , 53 :27~62.
- Jia Xiuming , Li Shengrong , Yue Laiqun , *et al*. 2006. Geological features and economic significance of rutile deposit in Nianzigou , Shanx[J]. Geology and Prospecting , $42(6): 42 \sim 46$ (in Chinese with English abstract).
- Jia Xiuming. 2007. Study on the mineralogy and chronology of the Nianzigou rutile ore deposit in Daixian County, Shanxi province D]. Beijing: A Dissertation Submitted to China University of Geosciences for Doctoral Degree in Chinese with English abstract).
- Jian Ping, Cheng Yuqi and Liu Dunyi. 2001. Petrographical study of metamorphic zircon: Basic roles in interpretation of U-Pb age of high grade metamorphic rocks J J. Earth Science Frontiers, & 3): 183~191(in Chinese with English abstract).
- Liu Dunyi, Jian Ping, Zhang Qi, et al. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: evidence for the early Paleozoic subduction [J]. Acta Geologica Sinica, 77(3): 317~327(in Chinese with English abstract).
- Ludwig K R. 1999. Using Isoplot/EX version 2 A Geochronological Toolkit for Microscoft Excel A]. Berkeley : Berkeley Geochronological Center Special Publication [C], 1a:47.
- Ludwig K R. 2001. Spuid 1.02 : A user manua[A]. Berkeley : Berkeley Geochronological Center Special Publication[C], 2 : 19.
- Pang Ercheng. 2005. Mineralogical characteristics and research on its mineral processing technologyof rutile deposit in Daixian, Shanxi province D]. Beijing : A Dissertation Submitted to China University of Geosciences for Engineering Master Degree (in Chinese with English abstract).
- Rubatto D , Gebauer D and Compagnoni R. 1999. Dating of eclogite-facies zircons : The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps) [J]. Earth and Planetary Science Letters , 167:141~158.
- Schilling J G , Zajac M , Evans R , *et al*. 1983. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N J]. American Journal of Science , $283(6):510 \sim 586$.
- Shi G H , Cui W Y , Cao S M , et al. 2008. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite J J. Journal of Geological Society , London , 165 : 221~234.
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts : Implications for mantle composition and processes[J]. Geol. Soc. London Spec. Publ. ,42:313~345.
- Triebold S, Eynatten H, Luvizotto G L, et al. 2007. Deducing soure rock lithology from detrital rutile geochemistry : An example from

the Erzgebirge, Germany [J]. Chemical Geology, 244:421~436.

- Vavra G , Gebauer D and Schmid R. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone(Southern Alps): An ion microprobe (SHRIMP) study[J]. Contrib Mineral Petrol , 122:337~358.
- Wang Denghong , Li Huaqin , Chen Yuchuan , et al. 2005. Lead isotopic composition of rutiles from the Chinese continental scientific drill (CCSD) hole and its genetic significance for the superlarge rutile deposit in Maobei , Jiangsu Province J]. Mineral Deposit Research : Meeting the Global Challenge , 1 , 2 :69~72.
- Wang Yuejun, Fan Weiming, Zhang Hongfu, et al. 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains : implications for a paleosubduction-related lithospheric mantle beneath the cenral North China Crator[J]. Lithos, 86:281~302.
- Williams I S. 1998. U-Th-Pb geochronology by ion microprobe J]. Reviews Econ. Geol. , $7:1\!\sim\!35.$
- Winter J D. 2001. An Introduction to Igneous and Metamorphic Petrology M]. USA : Prentice-Hall Inc. , $401 \sim 407$.
- Wu Xian and Zhang Jian. 2006. Geographical distribution and characteristics of titanium resources in China [J]. Titanium Industry Progress, 23(6):8~12(in Chinese).
- Wu Yuanbao and Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15):1554~1569(in Chinese).
- Xu Shaokang. 2001. Genetic types of mineralizing provinces of rutile deposits in Ching J] Geology of Chemical Minerals , 23(1):11~18 (in Chinese with English abstract).
- Xu Shaokang. 2006. Forming and changes of the ore rock in rutile mineral and the relation to the mineralization, Dafushan [J]. Geology of Chemical Minerals, 28(2): 73 ~ 104(in Chinese with English abstract).
- Xu Shaokang , Liu Lisheng , Yun Liantao , et al . 2000. Primary geological characters of rutile deposit in Lianzigou village J]. Geology of Chemical Minerals , 22 (3):139~148 (in Chinese with English abstract).
- Xu Shaokang , Liu Lisheng , Yun Liantao , et al. 2002. Metamorphic process of Nianzigou rutile deposit and its relation to rutile miner [J]. Geology of Chemical Minerals , 24(1):48~58(in Chinese with English abstract).
- Xu Shaokang, Liu Lisheng, Yun Liantao, et al. 2004. The basic characters of alteration and its relationshiop with ore-forming in Nianzigou rutile deposit[J]. Geology of Chemical Minerals, 26(2): 83~91(in Chinese with English abstract).
- Xu Yongjing , Pang Ercheng , Shi Guanghai , et al. 2009. Study on internal characteristics and mineral inclusions of zircons from the Daixian rutile deposit , Shanxi and its geological implication[J]. Acta Petrologica Sinica , 25(12): 3 422 ~ 3 430(in Chinese with English abstract).
- Zhang Yun, Guan Yongshi and Tian Yuzhen. 2000. The exploitation

and utilization of natural rutile in China J]. Conservation and Utilization of Mineral Resources , $10(5):27 \sim 30($ in Chinese).

- Zhao Guochun , Cawood P A , Wilde S A , et al. 2000. Metamorphism of basement rocks in the Central Zone of the North China Craton : implications for Paleoproterozoic tectonic evolutior[J]. Precambrian Research , 103:55~88.
- Zhao Guochun , Kröner A , Wilde S A , et al. 2007. Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt : A synthesis and implications for the evolution of the Trans-North China Oroger[J]. Geological Magazine , 144(5):753~775.

附中文参考文献

- 董月田 温春贵 郭梅凤. 2002. 山西省代县羊延寺-张山沟直闪岩矿 床特征及其成因浅析[J]. 地质找矿论丛、17(4):257~261.
- 贾琇明. 2007. 山西代县碾子沟金红石矿床矿物学及年代学研究 [D]. 北京:中国地质大学(北京)工程硕士论文
- 贾琇明,李胜荣,岳来群,等.2006.山西代县碾子沟金红石矿床地质 特征及经济意义研究J]地质与勘探,42(6):42~46.
- 简 平 程裕淇 刘敦一 2001. 变质锆石成因的岩相学研究-高级变 质岩 U-Pb 年龄解释的基本依据[J]. 地学前缘,8(3):183~ 191.
- 刘敦一,简 平,涨 旗,等. 2003.内蒙古图林凯蛇绿岩中埃达克浅 色岩 SHRIMP 测年:早古生代洋壳消减的证据[J].地质学报, 77(3):317~327.
- 庞尔成. 2005. 山西代县金红石矿矿物学特征及选矿研究[D]. 北 京:中国地质大学(北京)工程硕士论文.
- 吴 贤 张 健. 2006. 中国的钛资源分布及特点[J] 钛工业进展, 23(6):8~12.
- 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释 的制约[J]. 科学通报,49(16):1589~1604.
- 解广轰. 2005. 大庙斜长岩和密云环斑花岗岩的岩石学和地球化学-兼论全球岩体型斜长岩和环斑花岗岩类的时空分布及其意义 [M]. 北京:科学出版社,42~46.
- 徐永婧,庞尔成,施光海,等.2009.山西代县金红石矿床中锆石的内 部特征和矿物包裹体研究及其地质意义[J].岩石学报,25 (12):3422~3430.
- 徐少康. 2001. 我国金红石矿床成因类型及成矿区带[J]. 化工矿产 地质,23(1):11~18.
- 徐少康. 2006. 大阜山金红石矿床含矿岩体的形成变化及其与成矿 的关系[J]. 化工矿产地质, 28(2):73~104.
- 徐少康,刘力生,云连涛,等.2000. 碾子沟金红石矿床基本地质特征 [J]. 化工矿产地质,9(3):139~148.
- 徐少康,刘力生,云连涛,等.2002. 碾子沟金红石矿床变质作用特征 及其与成矿的关系[J]. 化工矿产地质,24(1):48~58.
- 徐少康,刘力生,云连涛,等.2004. 碾子沟金红石矿床蚀变作用的基 本特征及其与成矿的关系[J].化工矿产地质,26(2):83~91.
- 张 云,管永诗,田玉珍. 2000. 我国金红石矿资源开发利用现状
 [J]. 矿产保护与利用,10(5):27~30.