凡口铅锌矿区闪锌矿的成因矿物学特征研究

张术根¹,丁存根²,李明高³,刘慎波⁴

(1. 中南大学 地学与环境工程学院,湖南 长沙 410083;2. 华东有色地质勘查研究院,江苏 南京 210007;
 3. 广东有色地质勘查研究院,广东 广州 510080;4. 中金岭南凡口铅锌矿,广东 韶关 512325)

摘 要:通过野外观察、光学显微镜、X 射线衍射、扫描电镜及微区能谱分析、流体包裹体成分及盐度测定、稳定同位 素(S,Q,H)分析等手段,研究了广东凡口铅锌矿区闪锌矿的某些成因矿物学特征。结果表明,凡口矿区闪锌矿具有 3 个世代,分别形成于铅锌成矿期的 3 个成矿阶段。各世代闪锌矿在产出特征,表观颜色,结晶形态,解理发育程度, 晶体常数,铁含量,流体包裹体的成分、盐度、氢氧同位素组成、硫同位素组成及同与其连生的方铅矿的平衡分馏温 度等方面均存在规律性差别。从早期阶段到晚期阶段,成矿流体的演化特征是:成矿温度和成矿流体盐度从低到高 再到低,流体包裹体成分从 Na⁺-Ca⁺-Cl⁻型到 K⁺-Ca⁺-Cl⁻型再到 Na⁺-Ca⁺-Cl⁻型。³¹⁸Q、 dD 及 8³⁴S 均由高到低变 化,但 8¹⁸Q、 dD 及 8³⁴S 自中期阶段到晚期阶段降幅显著大于从早期阶段到中期阶段的降幅,反映晚期阶段至少有部 分 8¹⁸Q、 dD 及 8³⁴S 均显著较低的岩浆源流体参与成矿。认为凡口铅锌矿成矿流体主要为燕山早期区域岩浆热事件 加热的中低温混合源循环热卤水,成矿中晚期有岩浆热液参与成矿。 关键词:成因,矿物学,闪锌矿;凡口铅锌矿

中图分类号:P578.2+3

文献标识码 :A

文章编号:1000-6524(2009)04-0364-11

A genetic mineralogical study of sphalerite in the Fankou Pb-Zn ore district

ZHANG Shu-gen¹, DING Cun-gen², LI Ming-gao³ and LIU Shen-bo⁴

(1. School of Geoscience and Environmental Engineering, Central South University, Changsha 410083, China; 2. Huadong Institute of Geological Prospecting for Nonferrous Metals, Nanjing 210007, China; 3. Guangdong Institute of Geological Prospecting for Nonferrous Metals, Guangzhou 510080, China; 3. Fankou Pb-Zn Mine attached to Zhongjinlingnan Corporation, Shaoguan 512325, China)

Abstract : Based on field investigation , microscopic and scanning electron microscopic observation , X-ray diffraction , microprobe analysis , salinity and composition measurement of fluid inclusions and isotopic composition measurement of S , O and H , the authors studied some genetic mineralogical properties of sphalerite from the Fankou Pb-Zn ore district in Guangdong Province. The results suggest that there are three generations of sphalerite in this ore district formed respectively at three stages of the hydrothermal Pb-Zn sulfide ore-forming period. These three generations of sphalerite show remarkable differences in such aspects as mode of occurrence , paragenesis , apparent color , morphology , cleavage development , unit cell parameter , Fe content , composition and salinity , $\delta^{18}O_{\infty}$ and δD_{∞} of fluid inclusions , $\delta^{34}S_{\infty}$ and fractionation equilibrium temperature with galena. The evolutional properties of the ore-forming fluid from the first stage to the third stage are as follows : the temperature and salinity varied from low through high to low again ; the compositions of the ore-forming fluid changed from Na⁺-Ca⁺-Cl⁻ through K⁺-Ca⁺-Cl⁻ to Na⁺-Ca⁺-Cl⁻ again. The values of $\delta^{18}O$, δD and $\delta^{34}S$ participated in the ore-forming fluid during the third stage. It is thus held that the ore-forming fluid should

收稿日期:2008-12-09;修订日期:2009-03-27

be a kind of mixed-source hot brine heated by Yanshanian regional magmatic event, with a portion of magmatichydrothermal solution participating in the formation of the hot brine at the intermediate-late ore-forming stage. **Key words:** genesis; mineralogy; sphalerite; Fankou Pb-Zn ore district

广东凡口超大型铅锌矿床在南北长不足 2 000 m、东西宽不足 500 m、纵深不足 900 m 的空间范围 内 蕴藏了铅锌金属总量超过 8×10⁶ t 的矿物资源, 其成因引人瞩目,沉积改造成因(陈耀钦等,1984;卢 焕章,1984;吴延之等,1987;赖应 ,1988;邱小平, 1993;郑庆年,1996),热卤水交代成因(吴健民等, 1987),海底热泉喷流堆积成因(陈学明等,1998, 1999)以及多因复成(Zhang *et al*.,2001)等都是代 表性成因观点。

闪锌矿是凡口铅锌矿床最主要的矿石矿物,其 形成几乎贯穿铅锌硫化物成矿全过程,记录了丰富 的矿床成因信息。本文主要从该矿区闪锌矿的表观 颜色、基本成分、流体包裹体、硫同位素组成及其与 产出特征的关系 揭示其所记录的成因信息。

1 矿床地质特征

凡口超大型铅锌矿处在九峰-诸广山燕山期花 岗岩带南侧、曲江-仁化中生代断陷盆地北缘,是南 岭有色金属成矿带的重要矿床(图1)。矿区出露寒 武系八村群,中下泥盆统桂头组,中上泥盆统棋梓桥 组、佘田桥组、锡矿山组,下石炭统孟公坳组、石蹬子 组、中上石炭统壶天群地层(郑庆年,1996)。桂头组 与八村群为不整合接触,壶天群与石蹬子组为假整 合接触。八村群为浅变质砂页岩。桂头组为砂页 岩。中上泥盆统至石炭系为一套碳酸盐岩夹少量碎屑

Fig. 1 Geological sketch map of the Fankou ore district and its peripheral areas (after Guangdong Bureau of Geology and Mineral Resources 0)

岩建造。铅锌矿以中泥盆统棋梓桥组至中上石炭统 壶天群底部的碳酸盐岩为容矿地层。矿区构造比较 复杂,主要是印支期、燕山早期和燕山晚期构造运动 的产物。全区为形态完整性差、轴向南东、向北西端 扬起的复式向斜,其上叠加有轴向近东西和北东向 的褶皱。除褶皱外,发育北西西向、北西向、北北西 向、北东东向、北东向及北北东向多组断裂,层间滑 动破碎带也很常见。北西西向和北东东向断层规模 小,连续性差,可见辉绿岩等岩脉充填,被北东向、北 北东向、北西向及北北西向断裂错断,形成于印支 期:北北西向和北西向断裂规模大,延续数千米以 上,多期次活动明显,派生断裂和牵引褶皱发育,自 印支期到燕山晚期均有活动;北东向及部分北西向 断层形成于燕山早期 被北北东向断层错断 连续性 可见辉绿岩等岩脉充填,被北东向、北北东向、北西 向及北北西向断裂错断 形成于印支期 :北北西向和 北西向断裂规模大,延续数千米以上,多期次活动明 显 派生断裂和牵引褶皱发育 自印支期到燕山晚期 均有活动:北东向及部分北西向断层形成于燕山早 期 被北北东向断层错断 连续性差 北北东向断裂 形成于燕山晚期,完整连续,错断北东向和北西向及 更早形成的断裂,也切割铅锌硫化物矿体(Zhang Shugen, 2001)。受北东向断层、北西向断层和层间 滑动破碎带控制、矿体呈似层状、楔板状、透镜状、脉 状以及不规则囊状产出。矿化就位地段除辉绿岩、 辉绿玢岩以及辉石闪长玢岩等岩脉外、无大规模中 酸性岩浆侵入活动痕迹,但矿区北侧外围的九峰复

式花岗岩体距矿区仅约 9~10 km。野外观察表明, 上述脉岩有时与铅锌矿体空间交织,可见辉绿岩等 岩脉明显被中晚期铅锌硫化物矿脉穿插切割,在铅 锌硫化物矿体内呈残留体(图2)。围岩蚀变强度低, 与成矿有关的围岩蚀变有方解石化、白云石化、菱铁 矿化、绢云母化、绿泥石化、硅化以及黄铁矿化。

2 闪锌矿成因矿物学特征

2.1 表观颜色

凡口矿区的闪锌矿 表观颜色不外乎黑褐色、黄 褐色和浅棕色。多数晶体颗粒颜色较纯,也有部分 晶体颗粒由上述 3 种颜色呈环带状交互而成,只是 不同颜色环带的发育程度有差别,有以黑褐色为主 的杂色环带状,也有以黄褐色为主的杂色环带状。 根据野外观察,不同颜色闪锌矿的产出特点有规律 性差别:①黑褐色闪锌矿 是凡口矿区比较常见的闪 锌矿 主要出现在泥盆系赋矿层位。常含少量细粒 方铅矿 多以致密细粒集合体与细粒黄铁矿集合体 互成条带,部分为中细粒块状或团块状。有时在含 矿断裂带上呈角砾状,被较晚形成的铅锌硫化物胶 结 局部可见由其与细粒方铅矿及黄铁矿组成的条 带状或块状矿石被辉绿岩脉穿插。②黄褐色闪锌 矿 是凡口矿区最为常见的闪锌矿 广见于各赋矿层 位。主要呈中粗粒块状或团块状,常与方铅矿等呈 脉状穿插交代较早形成的条带状矿石 有时呈中粗 粒斑点状浸染于黄铁矿集合体内,可见其与方铅矿

图 2 辉绿岩与矿脉穿插关系照片

Fig. 2 Interpenetration relation between diabase and ore veins a—辉绿岩(βμ)被铅锌硫化物(ore)交代呈残留体,fs8-1;b—辉绿岩被棕色闪锌矿-方铅矿(ore)脉状穿插,fs8-2;c—辉绿岩被棕色 闪锌矿-方铅矿脉状穿插,光片,fs8-3

a—diabase($\beta\mu$) metasomatized to residual mass by Pb-Zn sulfides(ore), fs8-1 ; b—diabase($\beta\mu$) cut by veins of brown sphalerite(Sp)galena(Gn), fs8-2 ; c—diabase($\beta\mu$) cut by veins of brown sphalerite(Sp)galena(Gn)(polished thin section, fs8-3)

等一起呈脉状穿插辉绿岩脉。③浅棕色闪锌矿,是 凡口矿区较为少见的闪锌矿,多出现在石炭系赋矿 层位,其他层位偶尔见及。常与方解石、有时与方铅 矿呈晶洞状或呈各种脉状穿插较早形成的铅锌硫化 物。④环带状杂色闪锌矿,以黑褐色为优势环带者, 往往还发育黄褐色、浅棕色甚至浅棕黄色环带,与黑 褐色闪锌矿产出分布相似,通常呈细粒浸染状或浸 染条带状产出;以黄褐色为优势环带者,往往缺乏黑 褐色环带,其产出特征与黄褐色者相似,但呈中粗粒 斑点状浸染于黄铁矿集合体内更为多见。

根据不同表观颜色闪锌矿的产出特征,凡口矿 区闪锌矿可以划分为3个世代:第1世代包括黑褐 色和以黑褐色为主的杂色环带状闪锌矿;第2世代 包括黄褐色和以黄褐色为主的杂色环带状闪锌矿; 第3世代为浅棕色闪锌矿(图3)。

图 3 凡口矿区 3 个世代的闪锌矿 Fig. 3 Sphalerite of three generations in the Fankou mine a—第1世代条带状闪锌矿(I);b—第2世代脉状闪锌矿(II);c—第3世代脉状闪锌矿(II) a—1st generation sphalerite(I);b—2nd generation sphalerite(II);c—3rd generation sphalerite(III);

2.2 形态与内部结构

用光学显微镜、扫描电子显微镜以及立体显微 镜进行观察研究(图4)黑褐色闪锌矿多呈他形粒状 晶体 偶见菱形十二面体或四面体与立方体聚形半 自形晶,解理发育程度低,富含碎粒状黄铁矿残留 体 常被石英自形晶粒或石英脉穿插交代 内部有黄 铜矿乳滴状定向排列,也可见被黄铜矿显微脉状穿 插。流体包裹体少 尺寸小。黄褐色闪锌矿有他形、 半自形以及自形粒状晶体 主要为菱形十二面体 部 分为正负四面体聚形晶,解理最为发育,内部常见呈 定向乳浊状黄铜矿固溶体分离物,有时见自形晶粒 状石英包裹体 流体包裹体丰富 尺寸大。浅棕色闪 锌矿多为他形晶,有时见四面体和正负四面体聚形 半自形晶体,解理比较发育,质地纯净,几乎没有石 英、黄铁矿等机械包裹体,见稀少而尺寸大的流体包 裹体。黑褐色为主的杂色环带状闪锌矿通常呈变形 球粒状,保留胶体成因特征,少数重结晶环带具立方 体晶形特征 其核心富含立方体黄铁矿 明显可见富 含不规则粒状或五角十二面体黄铁矿的环带,外壳 被不规则粒状黄铁矿环绕 角纹状裂隙非常发育 隙 间多被立方体或不规则粒状黄铁矿充填,可被自形 石英穿插。黄褐色为主的杂色环带状闪锌矿,多为 变形球粒状,也有部分为重结晶的半自形晶粒状,主 要为正负四面体聚形晶。无论变形球粒状或半自形 晶粒状,其核心富含不规则状方解石和石英自形晶 粒,外侧环带常见五角十二面体黄铁矿,外壳被方解 石环绕,无石英穿插现象。

选择代表性样品进行 X 射线衍射分析(长沙矿 冶研究院,日本理学 Dmax/2200-γA10 型,Cu 靶 Kα 射线,石墨单色器 /4°/min,100 mA,50 kV),结果表 明,虽然经过严格挑选,各样品除闪锌矿外,方铅矿、 黄铁矿以及方解石普遍出现(图5)。

与显微镜观察结果相吻合,石英只在黑褐色、黑 褐色为主的杂色环带状闪锌矿、黄褐色及黄褐色为 主的杂色环带状闪锌矿中存在。同时,黄褐色或黄 褐色为主的杂色闪锌矿样品所出现的石英衍射峰强 度明显低于黑褐色或黑褐色为主的杂色闪锌矿样 品。

闪锌矿为等轴晶系立方面心格子构造晶体,晶体常数理论值为 $a_0 = 0.541$ nm。根据各代表性样品的闪锌矿衍射数据,用 unitcell 软件计算出晶体常数如表 1。

图 4 矿区各色闪锌矿显微照片

Fig. 4 Micrograph of sphalerite with varied colors

a—深杂色环带状闪锌矿(Sp)内部具富黄铁矿(Py)环带(扫描电镜);b—深杂色环带状闪锌矿核心具黄铁矿自形晶(扫描电镜);c—浅杂色 环带状闪锌矿具方解石(Cc)外壳(扫描电镜);d—深杂色环带状闪锌矿龟裂纹被黄铁矿充填(扫描电镜);c—浅杂色环带状闪锌矿核心具 方解石(光片,-);f—浅杂色环带状闪锌矿内部重结晶具正负四面体聚形切面(扫描电镜);g~i—依次为黑褐色、黄褐色、浅棕色闪锌矿解 理发育特征(扫描电镜);j—黑褐色闪锌矿被石英(Q)穿插交代(光片,-);k—黄褐色闪锌矿包裹自形石英(扫描电镜);l—浅杂色环带状 闪锌矿核心具石英自形晶(光片,-);m—黄褐色闪锌矿流体包裹体丰富(扫描电镜);n—浅杂色闪锌矿部分重结晶并显环带(双面片,-, 据赖应 _1986^①);o—浅棕色闪锌矿穿插交代黄褐色闪锌矿(双面片,-, I8赖应 _1986^①)

a—dark variegated zoned sphalerit(Sp) containing pyrite-rich girdl(Py χ SEM); b—core of dark variegated zoned sphalerite containing euhedral crystal of pyrit(SEM); c—light variegated zoned sphalerite (Sp) with calcit(Cc crus(SEM); d—cracks of dark variegated zoned sphalerite filled with pyrit(SEM); e—core of light variegated zoned sphalerite containing calcite (polished thin section , –); f—recrystallized light variegated zoned sphalerite containing calcite (polished thin section , –); f—recrystallized light variegated zoned sphalerite (SEM); g~i—cleavage characteristics of dark brown , yellowish brown and light brown sphalerite (SEM); j—dark brown sphalerite interpenetrated and metasomatized by quart(Q)(polished thin section , –); k—yellowish brown sphalerite wrapping euhedral crystal of quart(SEM); l—core of light variegated zoned sphalerit(Sp) containing euhedral crystal of quart(SEM); l—core of light variegated zoned sphalerite(Sp) containing euhedral crystal of quart(SEM); l—core of light variegated zoned sphalerite(Sp) containing euhedral crystal of quart(SEM); l—core of light variegated zoned sphalerite(Sp) containing euhedral crystal of quart(SEM); l—core of light variegated zoned sphalerite(Sp) containing euhedral crystal of quart(SEM); l—core of light variegated zoned sphalerite(Sp) containing recrystallization and girdle(two-sided thin section , – , after Lai Yingjian , 1986); l—core of light variegated zoned sphalerite and metasomatized by

图 5 凡口矿区各种颜色与形貌闪锌矿 X 射线衍射图谱

S-sphalerite ; P-pyrite ; Q-quartz ; G-galena

表 1 凡口矿区闪锌矿 X 射线衍射峰 d 值及晶体常数计算结果简表

Table 1 d values of X-ray diffraction of representative sphalerite samples and the calculated crystal parameters

	F01	F02-2	F02-1	F03-2	F04	F05	F06	F08	F03-1	F07	标准
位置	- 36086	- 160-27	- 160-27	-600N5	-600N5-6	-600N4	-600N2	- 600N2	-600N5	-600N2	
杜尔	浅棕	浅棕	黄褐	黄褐	浅杂色	浅杂色	黑褐色	黑褐色	黑褐色	深杂色	
1寸1圧	粗晶	粗晶	粗晶	中粗晶	环带状	环带状	中粗晶	中细晶	细晶	环带状	
面网			77		2165	2					
111	3.1324	3.132.4	3.1400	3.132 4	3.1411	3.1357	3.1315	3.1293	3.1303	3.1357	3.1231
200	2.7112	2.711.2	2.7185	2.7136	2.7126	2.7145	2.7121	2.7152	2.7152	2.7152	2.7046
220	1.916 0	1.9163	1.988 3	1. 191 7	1.9197	1.9178	1.9167	1.9156	1.9156	1.9171	1.9125
311	1.633 5	1.633.5	1.6316	1.6314	1.6324	1.6359	1.6343	1.6300	1.6343	1.6316	1.6310
222	1.5649	1.5599	1.5616	1.5645	1.5674	1.5657	1.5617	1.5611	1.5607	1.5608	1.5615
400	1.3512	1.3509	1.3512	1.3529	1.3524	1.3526	1.3546	1.3534	1.3530	1.3519	1.3523
331	1.2427	1.2424	1.2402	1.2405	1.2402	1.2432	1.2427	1.2432	1.2402	1.2397	1.2410
420	1.2100	1.2086	1.2084	1.2083	1.2132	1.2120	1.2093	1.2102	1.2111	1.2103	1.2096
а	0.5414	0.5427	0.5410	0.5411	0.5413	0.5413	0.5415	0.5414	0.5415	0.5413	

注:2θ范围 5°~80°标准根据 Skinner(1961)。

虽然 X 射线衍射没有采用内标进行系统误差校 正,但不影响了解各世代闪锌矿晶体常数的相对大 小及变化规律。结果显示,浅棕色闪锌矿晶体常数 相对较大,黄褐色闪锌矿晶体常数相对较小,以黄褐 色为主的杂色环带状闪锌矿晶体常数略高于黄褐色 闪锌矿,而以黑褐色为主的环带状闪锌矿晶体常数 较黑褐色闪锌矿略低。因为闪锌矿晶体常数受 Fe, Mn、Cd 等类质同像替换、结晶温度及压力条件等多 种因素制约,各种颜色闪锌矿的晶体常数差别也较 小,故难以单纯从其晶体常数差别有效讨论其与 Fe, Mn、Cd 替换量或与成矿温压条件的关系(Barton and Toulmin, 1966; Scott and Barnes, 1971, 1972; Georges, 2000)。很明显,凡口矿区闪锌矿的晶体常 数大小与其颜色深浅无简单对应关系。

2.3 微区成分分析

选择闪锌矿代表性微区进行能谱分析。因为能 谱仪分析精度限制,镉和锰均未检出(≤0.05%), 铁、锌及硫的分析结果列于表 2。结果显示,浅棕色 闪锌矿铁低,硫高,黄褐色闪锌矿铁高,硫低;黑褐色 闪锌矿的铁含量相对低于黄褐色者,硫含量变化范 围较宽。以黑褐色为主的杂色环带状闪锌矿的铁含 量明显低于黑褐色闪锌矿,而以黄褐色为主的杂色 环带状闪锌矿的铁含量也比黄褐色闪锌矿低。

为了解黑褐色为主和黄褐色为主的杂色环带状 闪锌矿从核心到边缘的晶体基本组分的变化,各选 择一个样品从一侧边缘经核心到另一侧边缘进行了 剖面微区成分分析,成分变化如表3所示。黄褐色 为主的杂色环带状闪锌矿从黄褐色核心向边缘,其

369

nm

Fig. 5 XRD patterns of sphalerite samples with different colors

S-闪锌矿;P-黄铁矿;Q-石英;G-方铅矿

 $w_{\rm B}/\%$

表 2 不同颜色闪锌矿微区成分分析结果

 Table 2
 Electron microprobe analyses of sphalerite samples

with different colors										
样号	颜色	Fe	Zn	S						
F01	浅棕色	2.39	71.09	26.52						
F02-2	浅棕色	0.74	71.24	28.02						
F02-1	黄褐色	6.43	68.06	25.51						
F03-2	黄褐色	7.62	66.24	26.15						
F04	黑褐色	4.59	67.37	28.04						
L07	黑褐为主(4点)	1.16	71.73	27.12						
F05a	黄褐色	5.41	69.21	25.38						
F03-1	黑褐色	4.85	70.01	25.13						
F05b	黄褐为主(12 点)	4.37	70.25	25.37						
F05c	黄褐色	6.27	68.50	25.24						
F06	黑褐色	5.35	67.95	26.70						
F08	黑褐色为主(8点)	2.97	70.51	25.93						

分析单位 :长沙矿冶研究院扫描电镜室,分析仪器:日立 S2450型 (以下同),加速电压 20 kV 表中除注明者外 均为3点平均值。

表 3 不同颜色为主的杂色环带状闪锌矿(F05) 微区成分剖面分析结果 2012/%

Table 3 Electron microprobe analyses of variegated zoned sphalerite 闪锌矿 Fe/S 距离/µm Fe Zn 58 4.98 25.14 -180069.89 0.1986.41 68.44 0.255 -150025.15-1.1507.47 25.59 66.94 0.292 71.82 +8003.0625.12 0.122 黄褐色 25.33 -6005.52 69.15 0.218 为主的 320 24.95 68.89 0.247 6.16 环带状 0 7.31 25.72 66.98 0.284 闪锌矿 400 6.13 25.19 68.68 0.243 750 5.41 25.38 69.21 0.213 1 000 2.85 25.13 72.01 0.113 1 200 4.37 25.3770.25 0.172 1 500 6.27 25.24 68.50 0.248 -8002.18 25.96 70.08 0.0843.04 68.83 0.117 -50026.03 68.24 0.108 黑褐色 -2602.87 26.46 为主的 0.089 0 2.29 25.7070.06 环带状 25.79 0.090 270 2.31 70.90 闪锌矿 72.76 500 1.16 25.91 0.045 750 3.0125.06 70.39 0.120 1 0 0 0 1.48 25.54 72.78 0.058

Fe、Zn 含量以及 Fe/S 比值均振荡性变化。黑褐色 为主的杂色闪锌矿从黑褐色核心到外环,其成分也 振荡性变化,但变化幅度总体较小,振荡对称性较 差。另外,黑褐色为主的杂色环带状闪锌矿的核心 并不显著富铁,而黄褐色为主的杂色环带状闪锌矿 的核心则明显富铁。

通常闪锌矿颜色随铁含量增高而变深,但凡口

矿区黑褐色闪锌矿的铁含量反而比黄褐色闪锌矿低,这种现象在加拿大特里多利西北 Pine Point 铅锌矿床也曾有报道,反映闪锌矿致色因素比较复杂,并非单纯由类质同像替换引起(Roedder and Dwornik, 1968; Fowler and L'Heureux, 1996)。

2.4 流体包裹体成分特征

选择浅棕色、黄褐色、黑褐色、黑褐色为主的杂 色以及黄褐色为主的杂色闪锌矿样品 分析流体包 裹体成分 结果如表 4。总体看,闪锌矿流体包裹体 有两种液相成分类型,即 K^+ - Ca^+ - Cl^- 和 Na^+ - Ca^+ -Cl⁻型。前者属于主要液相成分类型,后者属于次要 液相成分类型。在 O-H-C 体系气相组分被测物种 中都以富CO₂、贫CO、H₂及CH₄为特点。随液相 成分类型不同 CO2 含量和盐度有系统差别:即 K+-Ca⁺-Cl⁻型者,CO₂含量较高,盐度高(≥4.0%); Na⁺-Ca⁺-Cl⁻型者,CO₂含量相对较低,盐度也低 (≪4.0%)、从黑褐色经黄褐色到浅棕色闪锌矿 液 相成分由 Na⁺-Ca⁺-Cl⁻ 型转变为 K⁺-Ca⁺-Cl⁻ 型,再 转变为 Na+-Ca+-Cl-型 ,盐度也由低到高再到低。 杂色环带状闪锌矿的流体包裹体成分及盐度具有过 渡特点。即以黑褐色为主的杂色环带状闪锌矿 其 液相成分类型和盐度均介于黑褐色闪锌矿与黄褐色 闪锌矿之间 黄褐色为主的杂色环带状闪锌矿 其液 相成分类型和盐度均介于黄褐色闪锌矿与浅棕色闪 锌矿之间。由此可见,以黑褐色为主的杂色环带状 闪锌矿和以黄褐色为主的杂色环带状闪锌矿,虽然 分别与黑褐色闪锌矿和黄褐色闪锌矿为相同世代, 但其形成时间持续更长。

选择结晶程度较高、晶体颗粒较粗、无裂隙发育 的闪锌矿单矿物,送宜昌地质矿产研究所测定其流 体包裹体的 8¹⁸D 和 80 结果列于表 5。

从矿物流体包裹体的 d¹⁸ O和 dD值、特别是 d¹⁸O值随闪锌矿颜色变化的特点来看,成矿流体的 氢、氧同位素组成均具有随成矿作用演化发展而逐 渐相对富集轻同位素的趋势,特别是从黄褐色闪锌 矿到浅棕色闪锌矿,这种趋势更强烈。

将成矿流体的氢、氧同位素组成测算范围投入 δD-δ¹⁸O坐标系统(图6)陈江峰,2000),并与有关 水体比较,可以发现,凡口矿区成矿流体的δD、δ¹⁸D 所在区域远离 Crag 大气降水线,更远离平均海水组 成点,落在岩浆水和变质水的重叠区及其右侧变质 水的范围。但同时,这些落点位置又部分与阿尔伯 达地层建造水的拟合直线的高δD、高δ¹⁸O端靠近。

表 4 凡口矿区闪锌矿流体包裹体气液相成分(wg/%)及盐度(wnacl/%)

Table 4 Liquid and gaseous compositions $(w_B\%)$ and salinity $(w_{NaCl}/\%)$ of fluid inclusions in sphalerite

采样位置与	液相成分								气相成分				土臣
产出特征	K^+	Na ⁺	Ca^{2+}	Mg^{2+}	F^{-}	Cl-	K ⁺ /Na ⁺	F ⁻ /Cl ⁻	CO ₂	CO	H_2	CH ₄	
Sh-120-S14 浅棕色	0.248	0.484	0.513	0.179	0.010	0.498	0.512	0.020	6.46	0.168	0.004	0.042	2.50
Sh-120-9 ,黄褐色环带	0.861	0.718	0.827	0.060	0.012	1.501	1.199	0.008	5.605	0.105	0.016	痕	4.00
Sh-240-S6 ,黄褐色	2.275	0.426	1.350	0.078	0.030	1.135	5.340	0.026	11.68	0.412	0.005	痕	5.00
Sh-160-S8 ,黄褐色	2.738	0.446	1.075	0.142	0.039	3.802	6.139	0.010	18.63	痕	0.010	0.048	7.40
Sh-160-S9 ,黄褐色	2.594	0.564	0.751	0.125	0.051	0.717	4.599	0.071	5.98	痕	0.032	0.054	4.60
Sh-280-S8 ,黄褐色	0.844	0.412	1.477	0.125	0.068	8.468	2.049	0.008	17.57	0.830	0.012	痕	9.30
Sh-600-N8 黑褐色环带	0.908	0.844	0.544	0.048	0.022	5.019	1.076	0.004	5.14	痕	0.016	0.164	5.80
Sh-400-S14 "黑褐色	0.273	0.607	0.585	0.052	0.027	1.430	0.450	0.019	9.30	0.220	0.004	0.050	3.20

注:中南大学资源与环境工程学院,美国 DX-120型离子色谱仪-电导检测器,灵敏度 100 mV 计算方法:面积外表法;"痕"表示检测图谱中有 峰值,但是没能计算出具体数据,原因是峰值小于灵敏度。盐度测试方法:冷冻法,测试人:万芳,刘玮,测试仪器:法国 Chaixmeca,测试时间: 2002年5月。

表 5 凡口矿区闪锌矿流体包裹体 δ¹⁸0 和 δD 值及其与产出特征的关系

Table 5 δ^{18} O and δ D values of fluid inclusions of spalerite relative to different modes of occurrence

样号	采样位置	样品产出特征简述	δ ¹⁸ O/‰	8D ∕ ‰
B01	狮岭-120-S14-顶 27	浅棕色脉状粗晶闪锌矿、半透明,与粗晶方解石伴生	5.57	-63.2
B03	狮岭-120-9 采-顶 5	黄褐色中粗粒半自形晶粒状闪锌矿 团块状	10.78	- 52.4
B02	狮岭-600-N8-214	黑褐色为主的杂色闪锌矿,中粗粒变形球粒,斑杂状	12.26	-61.5
B05	狮岭-400-S14-32	黑褐色致密块状中细粒闪锌矿,被石英显微脉穿插	13.08	-50.2

送样单位:中南大学凡口铅锌矿东矿带成矿规律与成矿预测研究项目组,测定单位:宜昌地质矿产研究所。测定仪器 德国产 MAT251 质谱 仪测试。测定时间:2000年:06月。

结合矿区地质成矿背景分析,成矿流体可能主要为 循环热卤水(吴健民等,1987)。但这种热卤水初始 来源比较复杂,可能包括大气水、沉积及变质地层建 造水,甚至还有岩浆水,为混合源流体。因为这种混 合源流体演化成含矿热卤水的关键在于地热事件加 热,改变了其运动状态与物理化学性状,加剧其水/ 岩交换反应及成矿物质萃取能力,笔者曾称之为地 热流体(张术根,1998)。

2.5 闪锌矿的硫同位素组成特征

为了研究产出特征不同的闪锌矿的硫同位素组 成变化规律,在-280~-400m中段系统采样分析 (表6)。从表6可见,凡口矿区闪锌矿的硫同位素组 成与泥盆-石炭纪海水硫酸盐接近(张术根,1998), 显示硫主要来自容矿地层。同时,浅棕色闪锌矿的 δ³⁴S远小于黄褐色闪锌矿,而黄褐色闪锌矿的δ³⁴S 又略小于黑褐色闪锌矿。以黑褐色为主的环带状闪 锌矿的 8³⁴S 介于黑褐色与黄褐色闪锌矿之间,以黄 褐色为主的杂色环带状闪锌矿的δ³4S与黄褐色闪锌 矿相似,但似乎变化范围略宽。由此可见,从黑褐色 闪锌矿到浅棕色闪锌矿 即自成矿早期到成矿晚期, 成矿体系的 ³⁴S 是逐渐降低的。但与流体包裹体 ≥¹⁸O和 ≥D 的变化特征惊人地类似 从黄褐色闪锌矿 到浅棕色闪锌矿 ∂³⁴S 降幅比从黑褐色闪锌矿到黄 褐色闪锌矿大很多 反映成矿晚期至少有部分 δ¹⁸O、 $\delta D Q \delta^{34} S 均显著较低的流体参与成矿。$

	colors in the Fankou Pb-Zn ore district
Table	$\delta \delta^{34}$ S values of sphalerite samples with different
表 6	凡口矿区闪锌矿 δ^{34} S 值及其与产出特征的关系

产出特征	样号	δ ³⁴ S/‰	平均/‰		
	KDS03	9.5			
光炉舟	KC02	15.7	12.2		
戊标巴	KB14	13.8	13.2		
	KB15	13.6			
	KDS02	19.8			
	KA02	18.7			
苦妇分	KB04	19.2	10.2		
英 构巴	KB05	19.8	19.3		
	KB06	18.3			
	KC07	19.8			
	KDS08	22.7			
	KC09	21.3			
四治日本	KA04	22.0	21.0		
羔钩巴	KA08	24.2	21.9		
	KB09	20.9			
	KB11	20.2			
	KDS01	20.1	51		
	KC11	19.5			
深杂色环带	KB02	18.9	19.8		
	KB13	19.9			
_	KB08	20.4	N 15		
	KA05	19.6			
法办由环带	KDS05	(19.0	10.2		
次示巴坎市	KDS12	18.4	19.3		
	KA03	20.2			

送样单位:中南工业大学凡口铅锌矿东矿带成矿规律与成矿预测研究项目组,测定单位:桂林地质矿产研究所。测定仪器:德国产 MAT251质谱仪测试。测定时间2000年01月。

凡口矿区各世代闪锌矿均有方铅矿相随结晶, 根据手标本和显微镜观察,选择部分闪锌矿与方铅 矿彼此连生、无明显交代、穿插现象的样品,同时测 定闪锌矿和方铅矿的硫同位素组成,应用柴曼斯基 公式(1000 lnα_{So-Gn}=7.0×10⁵t⁻²)(α:分馏系数,t: 温度)计算出平衡分馏温度如表 7。从表 7 可知 凡 口矿区闪锌矿与方铅矿的硫同位素平衡分馏温度介 于 310~100℃ 但只有两件闪锌矿为黄褐色的样品 计算温度在 250℃以上。结合前人所测定的、代表成 矿温度下限的闪锌矿流体包裹体均化温度为 210~ 110℃(吴延之等,1987),可以认为凡口矿区铅锌硫 化物成矿作用在中低温环境完成的。值得注意的 是,早结晶的黑褐色闪锌矿与方铅矿的硫同位素平 衡分馏温度比晚结晶的黄褐色闪锌矿普遍要低。联 系到前述黑褐色闪锌矿的铁含量比黄褐色闪锌矿 低 浅棕色闪锌矿的铁含量也低于黑褐色闪锌矿 而 在相同成矿体系 闪锌矿的铁含量越低 其形成温度 也越低(Barton and Toulmin, 1966; Roedder and Dwornik, 1968),故可认为第1世代闪锌矿的成矿 温度比第2世代闪锌矿的成矿温度低。也就是说, 凡口矿区铅锌硫化物成矿期的成矿温度经历了由低 到高再到低的变化。

讨论

凡口铅锌矿床的成矿时代是矿床成因研究中长 期困扰的问题,也是成因争论的焦点之一。笔者认 为,该矿区辉绿岩脉与铅锌硫化物矿体间的穿插关 系,为解决此问题提供了重要线索。研究区的辉绿 岩脉在部分矿体内呈残留体,遭受绿泥石化、硅化以 及铁白云石化,还明显被中晚期铅锌硫化物矿脉穿 插切割,说明该区铅锌硫化物成矿作用发生在辉绿 岩脉侵入之后。因此,凡口铅锌硫化物矿床的铅锌 成矿作用是热液成矿作用的产物,与沉积-成岩过程 无直接成因联系。不管辉绿岩脉侵位时代如何,其 侵位事件是凡口矿区铅锌硫化物成矿时代界定的重 要依据。

邱小平(1991,1992)曾报道产于辉绿岩脉破裂

表 7 凡口矿区闪锌矿、方铅矿对硫同位素组成及平衡温度计算结果

	Table 7	Calculated ec	juilibrium	temperature o	of sulfur	isotopic	distillation	between s	phalerite a	and	galena
--	---------	---------------	------------	---------------	-----------	----------	--------------	-----------	-------------	-----	--------

取样标高/m	-2	280	- 3	320		- 360			- 2	400	
样品编号	KDS01	KDS08	KC07	KC09	KB04	KB08	KB11	KA02	KA03	KA04	KA08
颜色	深杂色	黑褐色	黄褐色	黑褐色	黄褐色	深杂色	黑褐色	黄褐色	浅杂色	黑褐色	黑褐色
δS _{Sp} /‰	20.1	22.7	19.8	21.3	19.2	20.4	20.2	18.7	20.2	22.0	24.2
δS _{Gn} ∕‰	17.3	20.0	17.5	17.6	16.3	17.4	17.1	16.6	16.1	18.4	19.3
α _{Sp-Gn}	2.8	2.7	2.3	3.7	2.9	3.0	3.1	2.1	4.1	3.6	4.9
温度/℃	227	236	279	162	218	210	202	304	140	168	105

面上的硬绿泥石钾氩同位素年龄为 97 Ma。笔者曾 在生产区 – 320 m、 – 360 m、 – 400 m 及 – 450 m 中 段 选择相对远离矿体、脉幅较宽、无明显次生变化 的岩脉中心部分,采集 10 余件新鲜辉绿岩标本,经 岩矿鉴定初步研究之后,选取部分标本送桂林冶金 地质矿产研究院重点试验室进行铷锶同位素分析 (表 8),获得 一条相关系数 $\gamma = 0.938$ 、初始值 (87 Sr/ 86 Sr), = 0.712 58,年龄为 163 Ma 的等时线, 从而认为矿区辉绿岩脉是燕山早期壳源型岩浆活动 产物,其破裂变形则发生在燕山晚期。因为燕山晚 期形成的北北东向断裂明显切割、破坏铅锌硫化物 矿体,故可认为凡口矿区的铅锌硫化物成矿发生在 燕山早期,与辉绿岩脉所代表的热事件直接相关,可 能辉绿岩脉所带来的热液是该矿床成矿中晚期 δ^{18} Q, δ D 及 δ^{34} S 均显著较低的参与成矿的流体的来源。

表 8 凡口矿区辉绿岩 Rb-Sr 同位素测定结果

 Table 8
 Rb-Sr isotopic composition of diabase veins in the Fankou ore districtrict

样品编号	⁸⁷ Rb / ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	w(Sr)10-0	• w(Rb)∕ 10 ⁻⁶
HA01	0.19126	0.71216	343.3	22.7
HB01	0.294 90	0.71299	268.2	27.3
HB04	1.687 53	0.715 88	174.2	101.7
HB05	0.707.59	0.71508	126.2	30.9
HC01	0.68736	0.71491	206.6	49.1

送样单位:中南工业大学凡口铅锌矿东矿带成矿规律与成矿预测研究项目组,测定单位:桂林矿产地质研究院重点实验室。测定仪器 德国产 MAT251 质谱仪测试。测定时间 2000 年 01 月。

4 结论

凡口矿区的第1世代的黑褐色和以黑褐色为主 的杂色环带状闪锌矿及细粒方铅矿可呈角砾状被黄 褐色闪锌矿等胶结,也被黄褐色闪锌矿方铅矿脉状 穿插,含黄铜矿固溶体分离物,被自形石英、石英脉 及黄铜矿脉穿插,环带状者还富含自形黄铁矿包裹 体,具富黄铁矿环带,为铅锌硫化物成矿早期阶段产 物。第2世代的黄褐色和黄褐色为主的杂色环带状 闪锌矿常与中粗粒方铅矿呈脉状穿插早期阶段闪锌 矿等矿物集合体,含黄铜矿固溶体分离物,环带状者 核心可见自形石英及方解石,环带内具碎屑状黄铁 矿,还具有富方解石环带,故为铅锌硫化物成矿中期 阶段产物。第3世代的浅棕色闪锌矿常与方解石、 有时与方铅矿呈晶洞状或呈各种脉状穿插较早形成 的铅锌硫化物,代表了铅锌硫化物成矿晚期阶段产物。

根据闪锌矿-方铅矿对的硫同位素平衡分馏温 度、闪锌矿的铁含量及闪锌矿流体包裹体均化温度 及其变化规律,凡口矿区铅锌硫化物成矿作用发生 在中低温环境,但随着成矿作用的演化,从早期经中 期到晚期阶段成矿温度经历了由低到高再到低的变 化。

根据闪锌矿的硫同位素组成、流体包裹体气液 相成分与盐度、流体包裹体氢氧同位素组成及硫同 位素组成及其变化,可以推断凡口矿区铅锌硫化物 成矿流体是初始来源复杂的多源混合热卤水,硫主 要来自容矿地层,晚期有部分外源硫加入,铅锌则可 能来自热卤水循环区的水岩交换反应。

在凡口矿区铅锌硫化物成矿期,随着成矿作用 的演化,与各成矿阶段相对应,不仅成矿温度经历由 低到高再到低的变化,成矿流体由 $Na^+-Ca^+-Cl^-$ 型 转变为 $K^+-Ca^+-Cl^-$ 型,再转变为 $Na^+-Ca^+-Cl^-$ 型, 盐度变化也是由低到高再到低,而 $\delta^{18}O,\delta D$ 及 $\delta^{34}S$ 组成则只经历由高到低的变化,显示各阶段成矿作 用是相同成矿体系有规律演化结果。但 $\delta^{18}O,\delta D$ 及 $\delta^{34}S$ 值从中期阶段到晚期阶段远比从早期阶段到中 期阶段降低幅度更加显著,显示成矿流体在成矿中 晚期至少有部分 $\delta^{18}O,\delta D$ 及 $\delta^{34}S$ 均显著较低的流体 参与成矿。

结合铅锌硫化物与辉绿岩等脉岩的切割关系及 控矿构造分析,初步认为:

(1)凡口矿区铅锌硫化物成矿作用是燕山早期 区域岩浆热事件加热的中低温混合源地热流体,经 过水/岩反应萃取其流经岩石的成矿物质,沿燕山早 期所形成及所复活的断裂与层间滑动破碎带降温降 压,卸载成矿。

(2)成矿金属组分可能来自整个地热流体循环 系统的各类岩石,硫则主要来自容矿碳酸盐岩地层, 但成矿晚期外源硫加入。

(3)导致凡口矿区铅锌硫化物成矿期成矿温度 自早到晚经历由低到高再到低的变化的原因仍需深 入研究。初步看法是:被区域燕山早期岩浆热事件 加热的地热流体,进入凡口矿区北东向、北西向断层 和层间滑动破碎带构成的排泄系统卸载成矿,成矿 早期排泄区围岩加热程度较低,岩浆热传递损耗高, 而成矿中期排泄区围岩加热程度高,岩浆热传递损 耗程度低,至成矿晚期,岩浆逐渐冷却,热能传递量 减少 排泄区围岩也逐渐冷却。

致谢 感谢凡口铅锌矿多年的研究经费支持, 尤其要感谢该矿坑口地质科在现场给予的密切配 合,还要感谢广东有色地勘院的真诚合作!

References

- Barton P B and Toulmin P. 1966. Phase Relations Involving Sphalerite in the Fe-Zn-S System[J]. Econ. Geol. 61:815~849.
- Chen Jiangfeng. 2000. Stable Isotope Geochemistry [M]. Beijing : Science press (in Chinese).
- Chen Xueming, Dengjun and Zhai Yusheng. 1998. The physical and chemical environment of the Fankou lead-zinc deposit formed by submarine hot-springs J. Mineral deposit, 17(3): 240 ~ 246(in Chinese with English abstract).
- Chen Xueming , Dengjun and Zhai Yusheng. 1999. Geological and geochemical characteristics of Fankou Pb-Zn deposit and its metallogenic analysis J J. Geology-Geochemistry , 27 (1):6~13 in Chinese with English abstract).
- Chen Yaoqin and Zeng Bofu. 1984. Discussion on the geology characteristics and genesis of large strata-bound lead-zinc mine in Fankol 11Acta Sedimentologica Sinica $\chi(3):34 \sim 47$ in Chinese).
- Fowler A D and Heureux I L. 1996. Self-organised Banded Sphalerite and Branching Galena in the Pine Point Ore Deposit, Northwest Torritories, Canada [J.]. Canada Mineralogist, 34:1211~1222.
- Georges Beaudoin. 2000. Acicular Sphalerite Enriched in Ag , Sb and Cu embedded within color-banded sphalerite from the Kokanee Range , British Columbia , Canada[J]. Canada Mineralogist , 38:1 387 ~ 1 398.
- Lai Yingjian. 1988. Origin of the Fankou lead-zinc deposit J]. Geological Review 34(3):220~230(in Chinese with English abstract).
- Lu Huanzhang. 1984. Genesis study of Fankou lead-zinc deposit in Guangdong J]. Geochimica (4): 357~365(in Chinese with English abstract).
- Qiu Xiaoping. 1991. Researches on ore-forming tectonic dynamics of Fankou lead-zinc ore deposits, Guangdong[J]. Acta Geoscientica Sinica, (23):57~72(in Chinese with English abstract).
- Qiu Xiaoping. 1992. Structural evolution and Polymetallic mineralization of Shaoguan basin in north of Guangdong[J]. Geoscience Exploration ,(7):36~39(in Chinese).
- Qiu Xiaoping. 1993. Study on ore annealing structure of Fankou leadzinc deposit J. Mineral Deposit 12(2):109~119(in Chinese).
- Roedder E and Dwornik E J. 1968. Sphalerite Color Banding : Lack of correlation with Iron Content, Pine Point, Northwest Torritories, Canada J. Amer. Mineral., 53:1523~1529.

- Scott S D and Barnes H L. 1971. Sphalerite Geothermometry and Geobarometry J J. Econ. Geol. 66:653~669.
- Scott S D and Barnes H L. 1972. Sphalerite-Wurtzite Equilibria and Stoichiometry J J. Geochim. Cosmochim. Acta , 36 :1 275~1 295.
- Skinner B J. 1961. American Mineralogist crystal structure databas [J]. American Mineralogist , 46 : 1 399~1 411.
- Wu Jianmin and Zhang Shengyan. 1987. Discussion on mineralization and double source brine metallogenic model of Fankou lead-zinc deposit in Guangdong province J]. Mineral Resources and Geology, $1(1):46 \sim 55$ in Chinese).
- Wu Yanzhi and Huang Wensheng. 1987. The typomorphic peculiarities of the main ore minerals of Fankou lead-zinc deposit, Guangdong, and their genetic significance J]. Journal of Guilin University of Technology, $7(1,2):1 \sim 10$ in Chinese with English abstract).
- Zhang Shugen. 1998. An analysis of geothermal fluid mineralization [J]. Mineral Deposit ,17(1) 91~96(in Chinese with English abstract).
- Zhang Shugen , Zhou Jianpu , et al. 2001. Geological and Geochemical Study on the Genesis of Fankou Pb-Zh Deposil J J. Geotectonica et Metallogenia , 25(1-2):125~131.
- Zheng Qingnian. 1996. Fankou Lead-Zinc Deposit in Guangdong Province M.J. Beijing Metallurgical Industry Prest in Chinease).

附中文参考文献

陈江峰. 2000. 稳定同位素地球化学[M]. 北京 科学出版社.

- 陈学明 邓 军 ,翟裕生. 1998. 凡口铅锌矿床海底热泉喷溢成矿的 物理化学环境 J]. 矿床地质 ,17(3) 240~246.
- 陈学明 邓 军 濯裕生. 1999. 凡口铅锌矿床地球化学特征及成矿 作用分析[J]. 地质地球化学 27(1) 5~13.
- 陈耀钦,曾波夫. 1984. 试论凡口大型层控铅锌矿床的地质特征及矿 床成因[J]. 沉积学报 2(3)34~47.
- 赖应 . 1988. 凡口铅锌矿床的成因[J]. 地质论评,34(3):220~ 230.
- 卢焕章. 1984. 广东凡口铅锌矿的成因研究 J]. 地球化学 (4):357 ~365.
- 邱小平. 1991. 广东凡口铅锌矿床成矿构造动力研究[J]. 中国地质 科学院院报(23)57~72.
- 邱小平.1992. 粤北韶关盆地构造演化与多金属成矿作用[J]. 地学 探索(7)36~39.
- 邱小平. 1993. 凡口铅锌矿床矿石退火结构研究[J]. 矿床地质,12 (2):109~119.
- 吴健民 张声炎. 1987. 论广东凡口铅锌矿床成矿作用及双源卤水成 矿模式讨论[J]. 矿产与地质 ,1(1):46~55.
- 吴延之,黄生文.1987.广东凡口铅锌矿床主要金属矿物的标型特征 及其成因意义[J].桂林冶金地质学院学报,7(1~2):1~10.

张术根. 1998. 地热流体成矿作用分析[J]. 矿床地质 ,17(1)91~96. 郑庆年. 1996. 广东凡口铅锌矿床[M]. 北京 冶金工业出版社.