高温实验模拟Mg/Ca浓度对文石质生物碎屑白云石化过程的影响
CSTR:
作者:
中图分类号:

P578.6+1;P579

基金项目:

广西自然科学基金(2021GXNSFAA220126); 国家自然科学基金(41962010, 42030502, 42090041)


Mg/Ca concentration effecting on dolomitization process of aragonitic bioclastics by high-temperature experimental simulation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [60]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    高温(150℃以上)合成白云石实验被认为是了解自然条件下白云石成因的有效途径。选择自然条件下对白云石成因有重要影响的Mg/Ca值(摩尔浓度比)指标,分别采用鹿角珊瑚和大琵琶螺两种文石质生物碎屑为先驱反应物,在220℃高温环境下对不同Mg/Ca值(0.5、0.7、1.0、1.2、1.5)和不同反应时间(0.5、1.0、1.5、2、3、6、8、14 h)条件下文石质生物碎屑的白云石化过程开展研究。结果表明,在高温条件下白云石化过程可分为诱导阶段、快速反应阶段和平稳阶段,这一反应过程未明显受到先驱文石质反应物的影响,反映了流体Mg/Ca浓度对白云石化产物具有明显的控制作用。随着反应溶液Mg/Ca值的提高,白云石化的诱导期缩短、速率加快,产物白云石中CaCO3的摩尔分数降低且有序度提高,表明高Mg2+浓度能够促进Mg2+快速交代文石中的Ca2+并完成白云石的有序化过程。研究结果为解释自然条件下Mg/Ca浓度对白云石化过程的影响提供了基础理论支撑。

    Abstract:

    High-temperature (above 150℃) dolomite synthesis experiment is considered to be an effective way to understand the genesis of natural dolomites. Under the consideration of the Mg/Ca value (molar concentration ratio) index that has an important impact on the genesis of natural dolomites, our experiment used two kinds of aragonitic bioclasts (Acropora, Ficus) as the precursor reactants in the 220℃ conditions to study the dolomitization process under different Mg/Ca concentration ratios (0.5, 0.7, 1.0, 1.2, 1.5) and reaction times (0.5, 1.0, 1.5, 2, 3, 6, 8, 14 h) respectively. The results show that the dolomitization process under high temperature can be divided into induction stage, rapid reaction stage and stable stage. This reaction process was not obviously affected by the precursor aragonite reactants, implying that the Mg/Ca concentration should have an obvious influence on the dolomitized products. With the increase of Mg/Ca ratio in the reaction solution, the induction period of dolomitization was shortened and the rate of dolomitization was accelerated, and the mole fraction of CaCO3 in the product dolomile was reduced and the order degree was increased, which indicates that high Mg2+ concentration can rapidly promote the replacement of Ca2+ by Mg2+ in aragonite lattice and complete the ordering process of the dolomites. This results provide basic theoretical support for explaining the influence of Mg/Ca mole concentration on natural dolomitization process.

    参考文献
    Adams J E and Rhodes M L.1960. Dolomitization by seepage refluxion[J]. American Association of Petroleum Geologists Bulletin, 44(12):1 912~1 920.
    Bai Xuan, Zhong Yijiang, Huang Keke, et al. 2022. Recrystallization of dolomite and its geological significance[J]. Acta Petrologica et Mineralogica, 41(4):804~817(in Chinese with English abstract).
    Budd D A. 1997. Cenozoic dolomites of carbonate islands:Their attributes and origin[J]. Earth Science Reviews, 42(1):1~47.
    Budd D A and Park A J. 2017. Formation of bed-scale spatial patterns in dolomite abundance during early dolomitization:Part I. Mechanisms and feedbacks revealed by reaction-transport modelling[J]. Sedimentology, 65(1):209~234.
    Füchtbauer H and Goldschmidt H. 1965. Beziehungen zwischen calciumgehalt und bildungsbedingungen der dolomite[J]. Geologische Rundschau, 55(1):29~40.
    Gaines A M. 1974. Protodolomite synthesis at 100℃ and atmospheric pressure[J]. Science, 55:84~101.
    Gaines A M. 1980. Dolomitization kinetics:Recent experimental studies[C]//Zenger D H, Dunham J B and Rthington R L. Concept and Models of Dolomitization. Society Economie Paleontologists and Mineralogists, Special Publication, 28:81~86.
    Goldsmith J R, Graf D L, Chodos A A, et al. 1958. Relation between latticeconstants and composition of Ca-Mg carbonates[J]. American Mineralogist, 43(1-2):84~101.
    Goldstein R H. 1996. Dolomite from reflux of moderate salinity brine, Enewetak Atoll[J]. American Association of Petroleum Geologists Bulletin, 5:54.
    Graf D L and Goldsmith J R. 1956. Some hydrothermal syntheses of dolomite and protodolomite[J]. The Journal of Geology, 64(2):173~186.
    Gregg J M, Bish D L, Kaczmarek S E, et al. 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment:A review[J]. Sedimentology, 62:1 749~1 769.
    Gregg J M and Shelton K L. 1990. Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri[J]. Journal of Sedimentary Research, 60(4):549~562.
    Gao Zijie and Zhu Shifa. 2018. The controlling factors of order degree of dolomite[J]. Science and Technology Innovation Herald, 15(8):33~39(in Chinese with English abstract).
    Hu Zuowei, Huang Sijing, Li Zhiming, et al. 2013. Ca/Mg ratio estimation of the dolomitizing fluids in Triassic Feixianguan formation, northeastern Sichuan basin[J]. Acta Geologica Sinica, 87(1):110~118(in Chinese with English abstract).
    Huang Sijing. 2010. Carbonate Diagenesis[M]. Beijing:Geological Publishing House, 226~230(in Chinese with English abstract).
    Jones B. 2001. Powder X-ray diffraction analysis of homogeneous and heterogeneous sedimentary dolostones[J]. Journal of Sedimentary Research, 71(5):790~799.
    Jones B and Luth R W. 2002. Dolostones from Grand Cayman, British West Indies[J]. Journal of Sedimentary Research, 72(4):559~569.
    Kaczmarek S E, Gregg J M, Bish D L, et al. 2017. Dolomite, very-high magnesium calcite, and microbes:Implications for the microbial model of dolomitization[C]//MacNeil A, Lonnee J, and Wood R. Characterization and Modeling of Carbonates-Mountjoy Symposium. United States:SEPM Special Publications, 1:7~20.
    Kaczmarek S E and Sibley D F. 2007. A comparison of nanometer-scale growth and dissolution features on natural and synthetic dolomite crystals:Implications for the origin of dolomite[J]. Journal of Sedimentary Research, 77(5):424~432.
    Kaczmarek S E and Sibley D F. 2011. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments:An alternative model for the geochemical evolution of natural dolomites[J]. Sedimentary Geology, 240(1):30~40.
    Kaczmarek S E and Sibley D F. 2014. Direct physical evidence of dolomite recrystallization[J]. Sedimentology, 61(6):1 862~1 882.
    Kaczmarek S E and Thornton B P. 2017.The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments[J]. Chemical Geology, 468:32~41.
    Katz A and Matthews A. 1977. The dolomitization of CaCO3:An experimental study at 252~295℃[J]. Geochimica et Cosmochimica Acta, 41(2):297~308.
    Kell-Duivestein I J, Baldermann A, Mavromatis V, et al. 2019. Controls of temperature, alkalinity and calcium carbonate reactant on the evolution of dolomite and magnesite stoichiometry and dolomite cation ordering degree-An experimental approach[J]. Chemical Geology, 529(3):119292.
    Land L S. 1967. Diagenesis of skeletal carbonates[J]. Journal of Sedimentary Research, 37(3):914~930.
    Land L S. 1985. The origin of massive dolomite[J]. Journal of Geological Education, 33(2):112~125.
    Land L S. 1998. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 4(3):361~368.
    Langbein R, Landgraft K F and Milbrodt E. 1984. Calciumüberschüsse im dolomit als Indikator des sedimentationsmilieus in devonischen Karbonatgesteinen[J]. Chemie der Erde, 43:217~227.
    Liu Lihong, Gao Yongjin, Wang Dandan, et al. 2021. The impact of gypsum salt rock on Cambrian subsalt dolomite reservoir in Tarim Basin[J]. Acta Petrologica et Mineralogica, 40(1):109~120 (in Chinese with English abstract).
    Lucia F J and Major R P. 1994. Porosity evolution through hypersaline reflux dolomitization[J]. Blackwell Scientific Publications, 21:325~341.
    Lumsden D N and Chimahusky J S. 1980. Relationship between Dolomite Nonstoichiometry and Carbonate Facies Parameters[M]. United States:Society Economie Paleontologists and Mineralogists, Special Publications, 28:123~137.
    Ma Yifei, Yao Qizhi and Zhou Gentao. 2013. Low temperature synthesis of disordered dolomite[M]//China Society of mineral and rock geochemistry. Abstract of the 14th Annual Meeting of China Society of mineral and rock geochemistry. Nanjing:Geological Journal of China Universities, 19:29(in Chinese).
    Medlin W L. 1959. The preparation of synthetic dolomite[J]. American Mineralogist:Journal of Earth and Planetary Materials, 44(9~10):979~986.
    Morrow D W. 1978. The influence of the Mg/Ca ratio and salinity on dolomitization in evaporite basins[J]. Bulletin of Canadian Petroleum Geology, 26:389~392.
    Ren M and Jones B. 2018. Genesis of island dolostones[J]. Sedimentology, 65:2 003~2 033.
    Roberts J A, Bennett P C, González L A, et al. 2004. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 32(4):277~280.
    Rodriguez-Blanco J D, Shaw S and Benning L G. 2015. A route for the direct crystallization of dolomite[J]. American Mineralogist, 100(5~6):1 172~1 181.
    Royse C F, Wadell J S and Petersen L E. 1971. X-Ray determination of calcite-dolomite:An evaluation[J]. Journals of Sedimentary Research, 41(2):483~448.
    Sánchez-Román M, McKenzie J A, Wagener A L R, et al. 2009. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 285(1~2):131~139.
    Sass E and Katz A. 1982. The origin of platform dolomites[J]. American Journal of Science, 282:1 184~1 213.
    Sibley D F, Dedoes R E and Bartlett T R. 1987. Kinetics of dolomitization[J]. Geology, 15(12):1 112~1 114.
    Sibley D F, Nordeng S H and Borkowski M L. 1994. Dolomitization kinetics in hydrothermal bombs and natural settings[J]. Journal of Sedimentary Research, 64(3a):630~637.
    Sibley D F. 1990. Unstable to stable transformations during dolomitization[J]. The Journal of Geology, 98:739~748.
    Song Quanying, Xu Jun and Zhang Yu. 2014. Dolomite precipitation mediated by Lysinibacillus sphaericus and Sporosarcina psychrophila[J]. Microbiology China, 41(10):2 155~2 165(in Chinese with English abstract).
    Vandeginste V, Snell O, Hall M R, et al. 2019. Acceleration of dolomitization by zinc in saline waters[J]. Nature Communications, 10(1):1 851~1 859.
    Vasconcelos C, McKenzie J A, Bernasconi S, et al. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 377(6 546):220~222.
    Wang R, Xiao Y, Yu K F, et al. 2022. Temperature regimes during formation of Miocene island dolostones as determined by clumped isotope thermometry:Xisha Islands, South China Sea[J]. Sedimentary Geology, 429:106079.
    Wang R, Yu K F, Jones B, et al. 2018. Evolution and development of Miocene "island dolostones" on Xisha Islands, China South Sea[J]. Marine Geology, 406:142~158.
    Warren J. 2000. Dolomite:Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 52(1~3):1~81.
    You Donghua, Wang Liang, Hu Wenxuan, et al. 2018. Formation of deep dolomite reservoir of Well TS1:Insights from diagenesis and alteration investigations[J]. Acta Petrologica et Mineralogica, 37(1):34~46(in Chinese with English abstract).
    Zhang Yubin, Liang Xiangji and Song Guoqi. 1996. A trial-discussion on the another implication of dolomitization-calcium-discharge action[J]. Petroleum Geology & Experiment, 18(4):402~405(in Chinese with English abstract).
    白 璇, 钟怡江, 黄可可, 等. 2022. 白云石重结晶作用及其地质意义[J]. 岩石矿物学杂志, 41(4):804~817.
    高子颉, 朱世发. 2018. 白云石有序度的控制因素[J]. 科技创新导报, 15(8):33~39.
    胡作维, 黄思静, 李志明, 等. 2013. 川东北地区三叠系飞仙关组白云化流体的Ca/Mg比定量估算[J]. 地质学报, 87(1):110~118.
    黄思静. 2010. 碳酸盐岩的成岩作用[M]. 北京:地质出版社, 226~230.
    刘丽红, 高永进, 王丹丹, 等. 2021. 塔里木盆地寒武系膏盐岩对盐下白云岩储层的影响[J]. 岩石矿物学杂志, 40(1):109~120.
    马怡飞, 姚奇志, 周根陶. 2013. 无序白云石的低温合成[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 南京:高校地质学报, 19:29.
    宋泉颖, 徐 俊, 张 宇. 2014. 球形赖氨酸芽孢杆菌(Lysinibacillus sphaericus)和嗜冷芽孢八叠球菌(Sporosarcina psychrophila)介导形成白云石晶体[J]. 微生物学通报, 41(10):2 155~2 165.
    尤东华, 王 亮, 胡文瑄, 等. 2018. 从成岩-蚀变特征探讨塔深1井白云岩储层成因[J]. 岩石矿物学杂志, 37(1):34~46.
    张玉宾, 梁祥济, 宋国齐. 1996. 试论白云岩化的另一种含义——排钙作用[J]. 石油实验地质, 18(4):402~405.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴松烨,王瑞,覃秋爽,等, 2023. 高温实验模拟Mg/Ca浓度对文石质生物碎屑白云石化过程的影响[J]. 岩石矿物学杂志, 42(2):237~249.
WU Song-ye, WANG Rui, QIN Qiu-shuang, et al, 2023. Mg/Ca concentration effecting on dolomitization process of aragonitic bioclastics by high-temperature experimental simulation[J]. Acta Petrologica et Mineralogica, 42(2): 237~249.

复制
分享
文章指标
  • 点击次数:164
  • 下载次数: 1074
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-21
  • 最后修改日期:2023-01-28
  • 在线发布日期: 2023-03-22
文章二维码