Abstract:The petrogenesis of high Ti basalts is a hot issue in the study of the Emeishan large igneous province (ELIP). Due to the spatial differences in geochemical characteristics of high Ti basalts, there is no consensus on the petrogenesis. In this paper, the authors systematically collected geochemical data of high Ti basalts and CA-ID-TIMS U-Pb dating results of zircons in the ELIP, respectively, and subsequently carried out integrated data processing, analysis and simulation. The research results show that the ELIP was formed in 259~258 Ma and the Emeishan high Ti basalts are distributed all over the ELIP. From west to east, the age of rocks shows no remarkable change, and the distribution of rocks changes from thick to thin. The high Ti basalts with little crustal contamination originated from mantle plume with the characteristics of enriched mantle. They experienced a low degree of partial melting with the possibility of the mixture of some lithospheric mantle components, and fractional crystallization was dominated by clinopyroxene. There was an asymmetric mantle plume at the depth of the ELIP. From west to east, the original depth and temperature of high Ti basaltic magma decreased, the melting depth and pressure decreased, resulting in the increase in melting degree. Simulation shows that the melting degree of garnet phase and spinel phase in the source area is 0.5%~2% and 5% respectively, the melting ratio of garnet phase decreases from 90% to 40% and that of spinel phase increases from 10% to 60% from west to east.