A.ferrooxidans培养过程中Al/Fe(摩尔比)对铁矿物形成产物的影响
CSTR:
作者:
基金项目:

国家自然科学基金(41472034);江苏省自然科学基金项目(BK20191444);校大学生学术科技创新基金资助项目(x20180477,x20180474)


The effect of Al/Fe mole rates on iron mineral products formed during the cultivation process of A. ferrooxidans
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    主要研究了磷酸铝(AlPO4)的加入量对氧化亚铁硫杆菌HX3培养液中铁矿物形成的影响,并对相应沉淀产物进行了结构表征分析。结果表明,AlPO4的加入对细菌培养过程中Fe2+的氧化无明显影响,但可促进Fe3+的水解和初始铁矿物相的形成,也可加速黄钾铁矾的转化形成。Al/Fe(摩尔比)为0.04~1的培养液中主要形成产物为施威特曼石和黄钾铁矾;Al/Fe为0.4和1时另有磷酸铁矿形成。较高的Al/Fe比值和磷酸根含量有利于磷酸铁矿的形成。

    Abstract:

    In this paper, the authors studied the effect of AlPO4 content on the formation of iron minerals in the cultures of A. ferrooxidans HX3, and characterized and analyzed the structures of the obtained corresponding precipitate products. The results showed that the addition of AlPO4 had little effect on Fe2+ oxidation during bacterial cultivation, but it could promote Fe3+ hydrolysis and formation of the initial iron mineral phase and accelerate transformation of jarosite. Under the higher Al/Fe mole rates of 0.04~1, schwertmannite and jarosite could be formed. Also, iron phosphate could be formed in cultures with Al/Fe mole rates of 0.4 and 1. The higher Al/Fe mole rate and phosphate content are conducive to the formation of iron phosphate.

    参考文献
    Bigham J M, Carlson L and Murad E. 1994. Schwertmannite, a new iron oxyhydroxysulphate from Pyhäsalmi, Finland, and other localities[J]. Acta Archaeologica, 58(393):641~648.
    Burton E D, Bush R T, Sullivan L A, et al. 2008. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil[J]. Chemical Geology, 253(1~2):64~73.
    Chi R, Xiao C and Gao H. 2006. Bioleaching of phosphorus from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 19(9):979~981.
    Gahan C S, Sundkvist J E and Sandstr m Å. 2009. A study on the toxic effects of chloride on the biooxidation efficiency of pyrite[J]. Journal of Hazardous Materials, 172(2~3):1 273~1 281.
    Gan M, Sun S J, Zheng Z H, et al. 2015. Adsorption of Cr(Ⅵ) and Cu(Ⅱ) by AlPO4 modified biosynthetic schwertmannite[J]. Applied Surface Science, 356:986~997.
    Kniep R and Mootz D. 1973. Metavariscite:a redetermination of its crystal structure[J]. Acta Crystallographica, 29(10):2 292~2 294.
    Liao Y H, Zhou L X, Bai S Y, et al. 2009. Occurrence of biogenic schwertmannite in sludge bioleaching environments and its adverse effect on solubilization of sludge-borne metals[J]. Applied Geochemistry, 24(9):1 739~1 746.
    Liu Huan, Lu Xiancai, Li Lei, et al. 2011. An experimental study on adsorption of Cu2+ and Pb2+ by synthesized schwertmannite[J]. Acta Mineralogica Sinica, 31(4):668~675(in Chinese with English abstract).
    Lu M W, Wang F, Chen K R, et al. 2015. The crystallization and structure features of barium-iron phosphate glasses[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 148:1~6.
    Song H J, Sun Y L and Jia X H. 2015. Hydrothermal synthesis of iron phosphate microspheres constructed by mesoporous polyhedral nanocrystals[J]. Materials Characterization, 107:182~188.
    Song Y W, Wang H R, Yang J, et al. 2018. Influence of monovalent cations on the efficiency of ferrous ion oxidation, total iron precipitation, and adsorptive removal of Cr(Ⅵ) and As(Ⅲ) in simulated acid mine drainage with inoculation of Acidithiobacillus ferrooxidans[J]. Metals, 8(8):596~607.
    Wang X M, Hu Y F, Tang Y D, et al. 2017. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces[J]. Environ. Sci.:Nano, 4:2 193~2 204.
    Xie Y Y, Lu G N, Ye H, et al. 2017. Fulvic acid induced the liberation of chromium from CrO42--substituted schwertmannite[J]. Chemical Geology, 475:52~61.
    Xiong H X and Guo R. 2011. Effects of chloride acclimation on iron oxyhydroxides and cell morphology during cultivation of Acidithiobacillus ferrooxidans[J]. Environmental Science & Technology, 45(1):235~240.
    Xiong H X, Liao Y H, Zhou L X, et al. 2008. Biosynthesis of nanocrystal akaganeite from FeCl2 solution oxidized by Acidithiobacillus ferrooxidans cells[J]. Environmental Science & Technology, 42(11):4 165~4 169.
    Xu Yiqun, Gu Yuanyuan, Yao Ting, et al. 2013. Regulating formation of iron minerals by iron bacteria/EPS and its environmental significance[J]. Acta Petrologica et Mineralogica, 32(6):782~788(in Chinese with English abstract).
    Xu Y Q, Yang M, Yao T, et al. 2014. Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite[J]. Journal of Environmental Sciences, 26(7):1 463~1 470.
    Zhang Di, Xu Yiqun, Yao Ting, et al. 2018. Influence of iron salts as Cl-/SO42- on iron minerals formed in Acidithiobacillus ferrooxidans solutions with soluble EPS[J]. Acta Petrologica et Mineralogica, 37(2):309~317(in Chinese with English abstract).
    Zhang T B, Lu Y C and Luo G S. 2013. Iron phosphate prepared by coupling precipitation and aging:morphology, crystal structure, and Cr(Ⅲ) adsorption[J]. Crystal Growth & Design, 13(3):1 099~1 109.
    附中文参考文献
    刘 欢, 陆现彩, 李 磊, 等. 2011. 合成施威特曼石吸附Cu2+和Pb2+的实验研究[J]. 矿物学报, 31(4):668~675.
    徐轶群, 顾园园, 姚 婷, 等. 2013. 铁细菌胞外多聚物对铁矿物的调控形成及其环境意义[J]. 岩石矿物学杂志, 32(6):782~788.
    张 笛, 徐轶群, 姚 婷, 等. 2018. Cl-/SO42-铁盐对含可溶性胞外多聚物Acidithiobacillus ferrooxidans溶液中铁矿物形成的影响[J]. 岩石矿物学杂志, 37(2):309~317.
    相似文献
    引证文献
引用本文

姜艾伶,刘佳欣,熊慧欣,等, 2019. A. ferrooxidans培养过程中Al/Fe(摩尔比)对铁矿物形成产物的影响[J]. 岩石矿物学杂志, 38(6):782~788.
JIANG Ai-ling, LIU Jia-xin, XIONG Hui-xin, et al, 2019. The effect of Al/Fe mole rates on iron mineral products formed during the cultivation process of A. ferrooxidans[J]. Acta Petrologica et Mineralogica, 38(6): 782~788.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-21
  • 在线发布日期: 2019-11-14
文章二维码