Abstract:Lead is widely distributed in nature, and its soluble salts have great toxicity to animals, plants and human bodies. The removal of lead pollution in the environment by biological remediation such as fungi has becomes one of the hot topics. In this paper, the anatase electrode was synthesized using sol-gel method, and characterized by X ray diffraction (XRD), the Raman, environmental scanning electron microscopy (ESEM) and electrochemical testing. The light-semiconductor mineral-microbial system was successfully constructed with anatase electrode and Aspergillus niger Bpb1. The effect of photoelectron on adsorption of lead ions by Aspergillus niger was studied. The experimental results showed that the adsorption rate of the experimental group increased by 33.6% on average with the highest being 42% compared with the control group. The photoelectron did not affect the morphology of lead minerals. Combined with energy spectrum test and previous literature, the authors found that lead ions were combined with organic acids to form minerals with organic lead salts, which were twined in hyphae. In this study, the anatase photoelectron could enhance the adsorption rate of lead ion by fungi, but did not affect its morphology.