Abstract:The compositional evolution of ore and gangue minerals has recorded detailed information concerning the hydrothermal mineralization process. Based on petrographic observation, the authors used the combined EMP and LA-ICP-MS analytical techniques for mica and wolframite to constrain the shallow hydrothermal mineralization process of the Songshugang Ta-Nb-W-Sn deposit in northeastern Jiangxi Province. The W-Sn orebody in the shallow part of the Songshugang deposit contains four different types of quartz veins from early stage to late stage and from deep to shallow:wolframite-quartz vein, cassiterite-quartz vein, sulfide-quartz vein and barren vein, respectively. The four types of quartz veins all contain early crystallized zinnwaldite and late formed muscovite-iron oxides. The mica in the early veins is mainly zinnwaldite, while the mica in the late-stage veins is dominated by muscovite. Compared with the chemical compositions of zinnwaldite, the muscovite contains less Ti, Na, Rb, Cs, W, Nb, Zn, Li2O but significantly higher Pb, Cu and B. From the early veins to the late veins, the mica compositions have following variable trends:Ti, Na, W, Nb concentrations decrease, and Pb, Zn, Cu, Li2O, B concentrations increase. Wolframite-quartz veins of different depths contain two different compositions of wolframite, but they belong to the same period of evolution. Compared with wolframite deposited early in the hydrothermal fluid, the late wolframite has a significantly lower Nb, Ta, Zr, Hf, Ti, Sn, U, In, and Sc but higher Mo and FeO/MnO ratio. The evolution of trace elements in mica and wolframite implies two different fluids involved in the hydrothermal mineralization process. One was granite-related hydrothermal fluid and the other originated from water-rock reactions. In the early stage of mineralization, magmatic hydrothermal crystallization was dominant, and in the late stage, due to the intensification of water-rock reaction, surrounding rock materials made more contribution.